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Flow chart for the incorporation of a causal physical model into existing machine learning architectures to facilitate physical interpretability of the model. 
The left hand side (dashed box) shows the encoder part of the algorithm which during training serves as the analogue to classical model fitting. The right 
hand side describes the decoder part which includes analytic descriptions of the image formation process from the physical model such as stellar color 

calculations, ray tracing and camera positions. After training this part is able to generate new data from the model in only a few milli seconds. 
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FULL FORWARD MODELLING: HYDRO SIMS
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NOT FEASIBLE! 

MODEL UNCERTAINTIES,  
TOO LOW SAMPLE SIZES, YOU’LL NEVER FIND 

A CLOSE MATCH TO AN OBSERVED GALAXY



OBSERVATIONS
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mass, we invoke another well-known empirical correlation,
the Schmidt star formation law (Schmidt 1959; Kennicutt
1998), which relates the star formation surface density to the
gas surface density.

For each of our galaxies we calculate the star formation rate
(SFR) in the fiber aperture from the attenuation-corrected H!
luminosity following Brinchmann et al. (2004).

We multiply our SFRs by a factor of 1.5 to convert from a
Kroupa (2001) IMF to the Salpeter IMF used by Kennicutt
(1998). Our SDSS galaxies have star formation surface den-
sities that are within a factor of 10 of !SFR ¼ 0:3 M" yr#1

kpc#2, exactly the range found by Kennicutt (1998) for the
central regions of normal disk galaxies. We convert star for-
mation surface density to surface gas mass density, !gas, by
inverting the composite Schmidt law of Kennicutt (1998),

!SFR ¼ 1:6 ; 10#4 !gas

1 M" pc#2

! "1:4

M" yr#1 kpc#2: ð5Þ

(Note that the numerical coefficient has been adjusted to in-
clude helium in !gas.) Combining our spectroscopically de-
rived M/L ratio with a measurement of the z-band surface
brightness in the fiber aperture, we compute !star, the stellar
surface mass density. The gas mass fraction is then "gas ¼
!gas=(!gas þ !star).

In Figure 8 we plot the effective yield of our SDSS star-
forming galaxies as a function of total baryonic (stellar+gas)
mass. Baryonic mass is believed to correlate with dark mass, as
evidenced by the existence of a baryonic ‘‘Tully-Fisher’’ rela-
tion (McGaugh et al. 2000; Bell & de Jong 2001). We are inter-
ested in the dark mass because departures from the ‘‘closed
box’’ model might be expected to correlate with the depth of
the galaxy potential well. Data on the distribution of the ef-
fective yield at fixed baryonic mass are provided in Table 4.
Because very few of our SDSS galaxies have masses below
108.5 M", we augment our data set with measurements from
Lee et al. (2003), Garnett (2002), and Pilyugin & Ferrini
(2000), all of which use direct gas mass measurements. We

Fig. 6.—Relation between stellar mass, in units of solar masses, and gas-phase oxygen abundance for '53,400 star-forming galaxies in the SDSS. The large
black filled diamonds represent the median in bins of 0.1 dex in mass that include at least 100 data points. The solid lines are the contours that enclose 68% and 95%
of the data. The red line shows a polynomial fit to the data. The inset plot shows the residuals of the fit. Data for the contours are given in Table 3.
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SDSS MANGA ~10.000 GALAXIES
EXPENSIVE INTEGRAL FIELD SPECTROSCOPY 
OTHER EXAMPLES: SAMI, CALIFA, FORNAX3D, ETC.

Tremonti+2004



LARGE SCALE SURVEYS: CHALLENGE FOR 
CONVENTIONAL ANALYSIS / MODELLING
PHOTOMETRIC DATA FOR MILLIONS OF GALAXIES,  
(EUCLID, LSST, DES, COSMOS, DEEP2, BUT ALSO LEGACY DATA LIKE SDSS)  

  
CLASSICAL ANALYSIS/CLASSIFICATION (VISUAL OR GALAXY ZOO LIKE) NOT 
FEASIBLE 

DATA EXPLORATION BEYOND (SIMPLE) MORPHOLOGICAL CLASSIFICATION 
‣ RESOLVED GALAXY PROPERTIES



HOW MUCH INFORMATION  
IS ENCODED IN BROAD  
BAND GALAXY 
IMAGES?



HOW MUCH INFORMATION  
IS ENCODED IN BROAD  
BAND GALAXY 
IMAGES?

CAN WE BUILD AN ANALYSIS TOOL WHICH: 

‣WORKS ON LARGE PHOTOMETRIC DATA SETS 
A. FAST 

‣IS EASY TO HANDLE 
C. AUTOMATION  
D. GENERALIZATION 

➡ FAST, OFF-THE-SHELF TOOL, READY TO USE



MOTIVATION/ROAD MAP
‣Proof-of-concept: Does multi-band photometry contain enough information to 

recover resolved maps of intrinsic properties —> Knowledge transfer from IFU 
surveys 
‣Which properties can we recover? Can we do kinematics? 
‣What do we learn about galaxies? —> Inspect the latent space. How does the 

machine reconstructs galaxies? 
‣Can we make the model physically interpretable? 
‣How can we incorporate such models in future pipelines?                                                                                                       

—> Sampling from latent space to create close analogues to observed galaxies
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PHOTOMETRY TO PHYSICAL PROPERTIES
g-band r-band i-band z-bandu-band

SFR HI abundance Z gas Z star Stellar mass 



METHOD:  
DEEP LEARNING 



SIMILAR APPLICATIONS
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Share a common Architecture: 

UNet (Ronneberger+2015)  

SIMILAR APPLICATIONS
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U-NET ARCHITECTURE: PIX2PIX (CONDITIONAL GAN) Isola+ CVPR 2017



● Almost all CNNs are classifiers: Y ∈ {0, 1}N 

● Here Y ∈ ℝN with multiple orders of 
magnitude 

1. Predict log(Y) 
2. Quantized Regression [Güler  et al. CVPR 2017] 

WHAT IS DIFFERENT WHEN 
PREDICTING PHYSICAL PROPERTIES



PROOF OF CONCEPT: ILLUSTRIS DATA
g-band r-band i-band z-bandu-band

SFR HI abundance Z gas Z star Stellar mass 



PROOF OF CONCEPT: ILLUSTRIS DATA
g-band r-band i-band z-bandu-band

SFR HI abundance Z gas Z star Stellar mass 

‣ SDSS MOCK IMAGES 256X256 PIXELS TORREY+2014, SNYDER+2015 

‣ RADIATIVE TRANSFER, BACKGROUND STARS, PSF, NOISE, 
SURFACE BRIGHTNESS CUT 

‣ PHYSICAL PROPERTIES ON SAME SCALE
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COMPARING TRUE AND PREDICTED SFR - 
100TH QUANT.

Prediction Truth



COMPARING TRUE AND PREDICTED SFR - 
70TH QUANT.

Prediction Truth



COMPARING TRUE AND PREDICTED SFR - 
40TH QUANT.

Prediction Truth



STELLAR PROPERTIES



STELLAR PROPERTIES



GASEOUS PROPERTIES



RADIAL SYSTEMATICS?



RADIAL SYSTEMATICS?



SUMMARY
SDSS (MOCK) U,G,R,I,Z  IMAGES CONTAIN ENOUGH 
INFORMATION TO PREDICT PHYSICAL PROPERTIES OF 
GALAXIES ON A PIXEL-BY-PIXEL BASIS 

NEXT STEPS: REAL LIFE APPLICATION 
USE PICASSSO ON REAL SDSS IMAGES WITH SDSS 
MANGA, SAMI, OR CALIFA AS TRAININGS SAMPLE 



NEXT STEPS:
PROOF-OF-CONCEPT WORKS 

QUANTIFY WHAT IS LEARNED: MORPHOLOGY OR COLOR? 
QUANTIFY DEPENDENCE ON:  
‣ IMAGE RESOLUTION (STABLE AGAINST FACTOR 2/4 LOWER RES) 

‣ TRAINING SET SIZE  
‣ NUMBER OF INPUT BANDS 

REAL LIFE APPLICATION: IFU SURVEY DATA (E.G. MANGA) 
RELEASE IT AS READY-TO-USE TOOL? 


