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“The story so far: In the beginning the Universe was
created. This has made a lot of people very angry and been
widely regarded as a bad move.”

(Douglas Adams)



Zusammenfassung

In dieser Arbeit wird die Dynamik der Hyaden auf Grundlage von direkten
N -Körper Einzelstern-Simulationen von King Modellen des King-Parameters
W0 = 6 und neuen Pan-STARRS1 Beobachtungsdaten studiert. Die Auswirkung
des anfänglichen Verhältnisses von Jacobiradius und 99% Massenradius auf die
Entwicklung der Massensegregation und das kumulative Massenprofil wird unter-
sucht. Durch Vergleich der kumulativen Massenprofile verschiedener Modelle mit
dem Massenprofil der Beobachtungsdaten wird das ursprüngliche Verhältnis von
RJac zu R99% für die Hyaden bestimmt. Für diese Modell wird die Auswirkung
der zufälligen Initialisierung der anfänglichen Massenfunktion (IMF) im Simu-
lationsprogramm durch zehn Simulationen mit unterschiedlichen Zufallszahlen
untersucht. Die Auswirkungen der Konvergenzpunktmethode auf die Abstands-
bestimmung der Sterne und die Geschwindigkeitsdispersion wird untersucht. Das
beste Modell des Ensembles wird dann weiter auf die Haufenform untersucht.
Dieses Modell besitzt eine anfängliche Masse von 1697M�, eine ursprüngliche
Anzahl von 2750 Sternen und ein anfängliches Verhältnis von Jacobiradius zu 99%
Massenradius von 0.44. Die Entfernungsbestimmung anhand der Konvergenz-
punktmethode zeigt einen systematischen Fehler von bis zu 4% und die Geschwin-
digkeitsdispersion in den Simulationen ist um fast einen Faktor zwei kleiner als
in den Beobachtungen. Deshalb müssen weitere Simulationen mit Doppelsternen
durchgeführt werden um die Unterschiede in der Geschwindigkeitsdispersion
genauer zu untersuchen.



Abstract

This thesis studies the dynamics of the Hyades based on directN -body single star
simulations of King models with King parameter W0 = 6 and new observational
data from Pan-STARRS1. The effect of initial ratio of Jacobi radius to 99% mass
radius on both the mass segregation and the cumulative mass profile is analyzed.
By comparing the cumulative mass profiles of different models with that of the
observations the initial ratio of RJac to R99% for the Hyades will be determined.
For this model an ensemble run with ten different random number seeds for
initialization is done. The effects of the convergent point method on the distance
determination of the stars and the velocity dispersion is investigated. The best
fittingmodel of the ensemble is then further investigated for the cluster shape. This
model has an initial mass of 1697M�, an initial number of 2750 stars and an initial
ratio of Jacobi radius to 99% mass radius of 0.44. For the distance determination
with the convergent point method, a systematic error of up to 4% is calculated and
the comparison between the simulated and observed velocity dispersion reveals a
difference of a factor of two. Therefore further simulations including binaries are
required.
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1. Introduction

The Hyades, within Germany also known as ”rain stars” (”Regengestirn”) and further
listed as Melotte 25 or Collinder 50, is an open star cluster located in the constellation
of Taurus, close to the Pleiades (”Seven Sisters”). They can be seen on the northern sky
from September to April. Its age is about 625Myr and it comprises about 700 stars with
a total mass of about 460M� within a radius of 30 pc from the cluster centre (Goldman
et al. [in press]). Because of its proximity to the Sun of just 46 pc there are very good
observational data (Röser et al. [2011]). In this work direct N -body simulations are
run to model the Hyades cluster, compare it to the observational data and to study the
dynamics within the cluster. Previous simulations of the Hyades were done by Ernst
et al. [2011] (also see references therein) with the direct N -body code nbody6tidgpu,
which is based on Nbody6 (see Aarseth [1999], Aarseth [2003] and Nitadori & Aarseth
[2012]). These studies tried to model the Hyades using an older set of data (Röser et al.
[2011]), providing masses, positions and velocities for the probable member stars.
The basis for this work is an observational data set of the Hyades provided by

Goldman et al. [in press], which presents 41 new candidates as Hyades member stars
down to masses as low as 0.1M�. Thus the declining faint end of the initial mass
function (IMF) indicated by the sample of Röser et al. [2011] is confirmed. Therefore
during a lab a model IMF was adapted from the observational data to simulate the
Hyades. In this work the present-day mass function, the cumulative mass profile and
the mass segregation will be investigated. In order to find the optimal model for the
Hyades, simulations with different initial ratios of RJac to R99% were run and tested for
the influence on the cumulative mass profile. In this connection an initial Roche lobe
overfilling of the Hyades at the time of their formation was discovered. In a second
step the effect of the membership determination on the kinematics of the cluster was
analyzed. The membership is determined with the convergent point method (van
Leeuwen [2009]) calculating the distances of the stars from their proper motions and
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1. Introduction

the assumption that all stars in the cluster share the same velocity. But since the
stars follow their individual orbits there has to be a velocity dispersion, such that the
distance calculated from the convergent point method must contain an uncertainty. By
applying the convergent point method to the stars in the simulation and comparing the
result to the actual distance given in the simulation, the uncertainty on the distance
determination and the velocity dispersion was estimated. As result a systematic error
of up to 4% on the distance determination was found.

1.1. Outline

This thesis is structured as follows:

1. The theoretical background and the potential theory of stellar systems are pre-
sented.

2. The Jacobi radius will be introduced and the family of King models as special
star cluster models will be shortly discussed. Moreover the Plummer-Kuzmin
model as an analytical model of the Milky Way will be illustrated.

3. The convergent point method and its application to the distance determination
of stars from their proper motion will be detailed.

4. The observational data set and the membership determination of the Hyades
stars will be explained.

5. The simulation program nbody6tid will be introduced and its use exemplified.
In addition the initial parameters for the velocity and the position of the Hyades
are calculated.

6. The results of the simulations are presented, compared to the observations and
discussed.

2
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Fig. 1.1.: Tidal tails of the Hyades as they evolve in the simulation 2750W6. The color coding
represents the local density in logarithmic scale. The top panel shows the Hyades
at the beginning of the simulation (after ≈ 6Myr). The second panel shows the tidal
tails after 200Myr of evolution, the third panel shows the tidal tails after 306Myr, the
fourth panel after 412Myr and the bottom panel shows the tidal tails as they are at
present-day.
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2. Potential theory

To calculate the orbits of stars in a star cluster one needs the total gravitational potential
of the ensemble of stars forming the star cluster, the Galactic potential and the initial
conditions. The potential of the star cluster can be calculated by simply adding up all
single star potentials. But for a huge number of stars, like in star clusters, this becomes
very complex. Therefore it is easier and for most calculations also sufficient to calculate
the potential of a smooth density distribution formed by smoothing out the single stars.
The connection between potential, density (and with this also the mass) and the force
acting on each unit of mass within the considered system should be derived in this
chapter. It will provide the theoretical background for the prescription of the dynamics
within gravitationally bound systems following Binney & Tremaine [2008, eq. (2.1) to
(2.18)]. Starting point for the derivation will be Newton’s law of gravitation.

2.1. Basic principles

The differential Newtonian law of gravitation per unit mass at the position x caused by
a density distribution %(x′) reads as follows:

δF (x) = G
x′ − x
|x′ − x|3

δm(x′) (2.1a)

= G
x′ − x
|x′ − x|3

%(x′)δ3(x′) (2.1b)

where G denotes the gravitational constant and (x′ − x) is the distance between the
position of the unit mass and the position of the mass element δm(x). The total force
Ftot(x) can be obtained by integrating over the whole space and thus by summing up
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2. Potential theory

all contributions from the small volume elements δ3(x′) at position x′.

Ftot(x) = G

∫
x′ − x
|x′ − x|3

%(x′) dx′ (2.2)

With the vector identity for the gradient operator ∇x

∇x

(
1

|x′ − x|

)
=

x′ − x
|x′ − x|3

(2.3)

it follows that the total force Ftot(x) may be written as

Ftot(x) = G∇x

∫
%(x)

|x′ − x|
dx′ (2.4)

and therefore it holds that the gravitational force is conservative (its curl vanishes
because the rotation of the gradient is zero) and with the expression for the gravitational
potential

Φ(x) = −G
∫

%(x′)

|x′ − x|
dx′ (2.5)

it can be written as the gradient of a scalar potential:

F (x) = −∇Φ (2.6)

For clarity the subscript on the gradient operator∇ is omitted.

The following contains the derivation of Poisson’s equation and Gauss’s theorem,
which give the relation between the potential and the density and between the potential
and the mass respectively. The starting point for the derivation of Poisson’s equation
will be Equation 2.2. By dividing this equation through the test massmt one obtains
the force per unit test mass Fm(x). The divergence of this equation gives:

∇ · Fm(x) = G

∫
∇x · x′ − x

|x′ − x|3
%(x′) dx′ (2.7a)

and given that

∇x ·
(

x′ − x
|x′ − x|3

)
= 0 for (x′ 6= x) (2.7b)

6



2.1. Basic principles

the only contribution to the integral of Equation 2.7a comes from the point x = x′.
Hence the volume integration can be limited to a sufficiently small sphere with radius r
around this point, so that the density %(x′) will be almost constant within this sphere.
For this reason the density can be taken out of the integral and the remaining factors
can be written as:

∇ · Fm(x) = G%(x)

∫
|x′−x|≤r

∇x ·
(

x′ − x
|x′ − x|3

)
dx′ (2.7c)

This equation can be rewritten under the use of the divergence theorem to convert the
volume integral into a surface integral. For detailed derivation of the next step see [eq.
(2.9a), BT, p. 57]. Equation 2.7a consequently becomes the form:

∇ · Fm(x) = −G%
∫
dΩ = −4πG%(x) (2.8)

where dΩ is the element of solid angle. To obtain Poisson’s equation one has to substitute
∇ · Fm(x) with Equation 2.6. This gives the relation between potential Φ and density
%:

∆Φ = 4πG% (2.9)

This equation becomes Laplace’s equation for the special case of % = 0.

∆Φ = 0 (2.10)

In this equation∆ = ∇2 is the Laplacian, the divergence of the gradient.

Now the step from Poisson’s equation to Gauss’ theorem is a simple one. Consider an
arbitrary volume containing the total massM . Integration of both sides of Equation
2.9 and applying the divergence theorem leads to

4πG

∫
% dx = 4πGM =

∫
∆Φ dx =

∫
∇Φ dS (2.11)

where dS is a small surface element. Therefore Gauss’s theorem shows that the closed
surface integral over the gradient of the potential Φ is equal to the total enclosed mass
M times 4πG.

7



2. Potential theory

2.2. Potential energy

Following the derivation in Binney & Tremaine [2008, eq. (2.13-2.18)], the equation for
the potential energy of a stellar system can be obtained by looking at the work done
by bringing a test mass δm from infinity to the place x under the influence of some
potential Φ(x) caused by a density distribution %(x). The work done by this process
is then simply δmΦ(x). This means one adds some increment δ%(x) to the density
distribution and thus the potential energy changes by:

δW =

∫
δ%(x)Φ(x) dx (2.12)

From Poisson’s equation follows that the change in potential must satisfy the equation
∆(δΦ) = 4πG(δ%) and therefore Equation 2.12 becomes:

δW =
1

4πG

∫
Φ∆(δΦ) dx (2.13)

This can be rewritten using the divergence theorem and the fact that the surface integral
vanishes for large r1.

δW =
1

4πG

∫
Φ∇(δΦ) dS − 1

4πG

∫
∇Φ∇(δΦ) dx (2.14)

Equation 2.13 then becomes

δW = − 1
8πG

δ

(∫
|∇Φ|2 dx

)
(2.15)

And hence the sum of all contributions δW leads to the equation for the total potential
energy:

W = − 1
8πG

∫
|∇Φ|2 dx (2.16)

1The surface integral vanishes because for the potential it applies Φ ∝ r−1 and for r → ∞ |∇δΦ| ∝
r−2, hence the integrand is proportional to r−3 while the total surface area of a sphere is proportional
to r2. Furthermore 1

2δ|∇Φ| = 1
2 (∇Φ ·∇Φ) = ∇Φ ·∇ (δΦ).

8



2.2. Potential energy

Using once again the divergence theorem one obtains:

W =
1
2

∫
%(x)Φ(x) dx (2.17)

For N individual stars in a star cluster the gravitational potential energy can also be
defined by:

W = −
N∑
i=1

N∑
j=1,i<j

G
mimj

|xi − xj|
(2.18)

wheremi,j are the masses of the ith and jth star, G is the gravitational constant and
|xi − xj| is the distance between the considered stars. The restriction i < j is needed
because every pair of stars should appear only once in the sum.

9





3. Open star clusters - Models and
properties

Within the Milky Way many small stellar systems of about 102 to a few times 106

stars can be found, called star clusters. In our Milky Way two different types can
be distinguished (Binney & Tremaine [2008, p. 29]): The old and massive globular
clusters contain 104 to 106 old stars of the same metallicity; Younger and smaller stellar
systems consisting of 102 to 104 young stars are called open clusters. The latter are
less compact stellar systems of stars of the same age and metallicity, originated from
the same molecular cloud. Most open clusters in our Galaxy are younger than 1Gyr
and new open clusters continuously form in star forming regions in the Galactic disk
(Binney & Tremaine [2008, p. 29]). Due to their low mass and the resulting weak
mutual attraction of the stars, open star clusters loose their stars in the tidal field of the
Galaxy and slowly dissolve. Therefore it is likely that a large fraction of stars in the
Galactic disk have formed in open clusters which have been totally dissolved (Binney
& Tremaine [2008, p. 29]).
This chapter deals with the collisionless Boltzmann equation as an analytical approach

to describe the dynamics of a star cluster. It will introduce the two parametric King
model for the description of star clusters and the Plummer-Kuzmin model as an analyt-
ical galaxy model used to describe the Milky Way. Furthermore the velocity dispersion
and the star cluster shape in the tidal field of the Galaxy will be discussed.

3.1. Jacobi radius

Since open star clusters are systems of gravitationally bound stars in the tidal field
of a galaxy, there has to be a limiting radius marking the border between bound and

11



3. Open star clusters - Models and properties

unbound stars. For distances from the barycentre less than this limiting radius stars
can be considered as gravitationally bound to the cluster (although there are a number
of potential escapers within this limiting radius with Jacobi energies higher than the
one needed to escape the cluster). For slightly larger radii the stars can be considered
as loosely bound and for much higher radii the stars are no longer part of the star
cluster. However this limiting radius is not well defined. A derivation for the value of
this radius is given in King [1962]. It follows the approach that a value for this limiting
radius can be obtained by calculating the distance between cluster barycentre and that
point on the line connecting the cluster barycenter and the Galactic centre at which the
acceleration acting on a star is zero with respect to the cluster barycentre. Therefore
the relative acceleration between the cluster center and a star lying on the line between
galactic centre and cluster barycentre has to be calculated. The acceleration of the
cluster barycentre at radius R from the galactic centre is given by:

d2

dt2
R = RΩ2 − d

dR
ΦG (3.1)

where the angular velocity is denoted by Ω and Φ refers to the Galactic potential. The
acceleration of the star at radius Rs from the galactic centre is given by the equation:

d2

dt2
Rs = RsΩ

2 −
(

d
dR

Φ

)
Rs

− GM(Rs −R)

|Rs −R|3
(3.2)

The first two terms on the right side represent the acceleration of the star due to its
orbit around the galactic centre, the second part describes the impact of the cluster
massM on the star’s acceleration. From Equation 3.1 and Equation 3.2 the relative
acceleration of the star with respect to the cluster barycentre is:

d2

dt2
(Rs −R) = (Rs −R)Ω2 −

(
d
dR

Φ

)
Rs

+
d
dR

Φ− GM(Rs −R)

|Rs −R|3

∼=
(
Ω2 − d2

dR2
Φ− GM

|Rs −R|3

)
(Rs −R)

(3.3)
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3.2. Collisionless Boltzmann Equation

Where the approximation

d
dR

Φ−
(

d
dR

Φ

)
Rs

(R−Rs)
∼= d2

dR2
Φ (3.4)

for small values of (R − Rs) was used to simplify the equation. For d2

dt2 (Rs − R) =

0 the non-trivial solution to Equation 3.3 gives the formula for the limiting radius
R3

Jac := |Rs −R|3.
R3

Jac =
GM

Ω2 − d2

dR2
Φ

(3.5)

Using the definition of the epicycle frequency κ

κ2 =
d2

dR2
Φ + 3Ω2 (3.6)

(compare Binney & Tremaine [2008, p. 165, eq. (3.79a) and (3.79c)])
this reduces to:

RJac =

(
GM

4Ω2 − κ2

) 1
3

(3.7)

And using the term β =
κ
Ω

we can write RJac as:

RJac =

(
GM

(4− β2) Ω2

) 1
3

(3.8)

where β2 equals 1 for a Kepler potential and β2 = 2 for a galaxy with flat rotation
curve.

3.2. Collisionless Boltzmann Equation

By approximating the potential of N individual stars through a smooth potential of
a density distribution, the calculated orbit of a star will deviate from the actual orbit
the star would take in the unsmoothed potential. The timescale needed to signifi-
cantly change the orbit of the star in the smooth potential compared to the orbit in

13



3. Open star clusters - Models and properties

the unsmoothed potential is called relaxation time trelax (Binney & Tremaine [2008,
p. 37]). The deviation of the orbit in the actual N star potential compared to the
smoothed potential is small for timescales smaller than the relaxation time. In certain
approximation, the relaxation time can be defined as:

trelax = 0.1
N

ln(N)
tcross (3.9)

where tcross = R/v is the crossing time defined by the radius R of the cluster and its
central velocity dispersion v, the typical timescale needed for a star to cross the cluster
(tcross ∼ tdyn Binney & Tremaine [2008, eq. (2.40)]), and N is the number of stars in
the cluster. The factor 0.1 results from the actual calculation with impact parameters
(see Binney & Tremaine [2008, p. 36]). For the Hyades the initial crossing time can
be calculated with the parameters given in Table 7.2 to tcross ≈ 20Myr and thus the
initial relaxation time is calculated to trelax ≈ 1.3Gyr. This value is more than twice
as large as the Hyades age of 625Myr. From this it follows, that it is appropriate to
start the star cluster model in dynamical equilibrium since the star cluster would relax
into dynamical equilibrium after a few crossing times, which is much shorter than the
lifetime of the cluster. Furthermore it is appropriate to describe the dynamics of the
stars within the Hyades and the current state by a smooth potential. But the process
of mass segregation acts on a timescale of the order of the relaxation time due to
two-body relaxation, which can not be described by a smooth potential. The relaxation
time for different star types is proportional to Mstar/mmean, whereMstar is the mass of
the considered star type and mmean the mean stellar mass of the stars in the cluster.
Therefore a direct N -body approach has to be undertaken.

The deduction of the collisionless Boltzmann equation in this section follows basically
that in Binney & Tremaine [2008, p. 275-276]. At any time a full description of a
collisionless system can be given for each type of stars by a distribution function (DF)
f(x,v, t) ≥ 0 specifying the probability p = f(x,v, t) dx dv of finding a star at time t
with position in the small space volume dx around x and velocity in the small velocity
range dv around v. With the initial conditions for position and velocity f(x,v, t0)
for every star - and the Newtonian laws - the value for f(x,v, t) for every time t is
known. In phase space the movement of the stars around their orbits can be described

14



3.2. Collisionless Boltzmann Equation

by a six-dimensional coordinate vector w and its six-dimensional velocity ẇ:

(x,v) ≡ w

ẇ =(ẋ, v̇) = (v,−∇Φ)
(3.10)

The stars whose motion is described by ẇ drift smoothly through phase space, which
means that the motion ẇ conserves stars, no new stars are created and no stars are
destroyed. Therefore f(w, t) satisfies a continuity equation, such as the one used in
fluid mechanics.

∂f

∂t
+

6∑
α=1

∂(fẇα)

∂wα

= 0 (3.11)

By integrating this equation over some volume of phase space the meaning of this
equation becomes clear. The first term describes the change with time of the probability
of finding a star in the specified volume, while the second term describes the rate at
which stars flow out of the considered volume. Equation 3.11 can be simplified with
the following relation for ẇ:

6∑
α=1

∂ẇα

∂wα

=
3∑

i=1

(
∂vi
∂xi

+
∂v̇i
∂vi

)
=

3∑
i=1

− ∂
∂vi

(
∂Φ
∂xi

)
= 0 (3.12)

In this equation the derivative
(

∂vi
∂xi

)
becomes zero because the position xi and the

velocity vi are independent coordinates of phase space. The second step follows because
∇Φ is independent of the velocity. Plugging this relation into Equation 3.11 leads to
the collisionless Boltzmann equation:

∂f

∂t
+

6∑
α=1

ẇα
∂f

∂wα

= 0 (3.13a)

or rewritten by using the definition of w this yields:

∂f

∂t
+

3∑
i=1

(
vi
∂f

∂xi
− ∂Φ
∂xi

∂f

∂vi

)
= 0 (3.13b)
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3. Open star clusters - Models and properties

and in vector notation this equation becomes:

∂f

∂t
+ v ·∇f −∇Φ · ∂f

∂v
= 0 (3.13c)

This can also be written with Hamilton’s formalism (see Binney & Tremaine [2008,
p. 797]) if we consider w = (x,v) = (q,p) and ẇ = (ẋ, v̇) = (q̇, ṗ) as arbitrary
canonical variables. Subsequently Equation 3.13a becomes:

∂f

∂t
+ q̇

∂f

∂q
+ ṗ

∂f

∂p
= 0 (3.14)

And by substituting Hamilton’s equations:

q̇ =
∂H
∂p

ṗ = −∂H
∂q

(3.15)

into Equation 3.14, this can be written as:

0 =
∂f

∂t
+
∂f

∂q
· ∂H
∂p

− ∂f

∂p
· ∂H
∂q

=
∂f

∂t
+ [f,H]

(3.16)

where in the last step the second and third term were rewritten under the use of the
Poisson bracket (see Binney & Tremaine [2008, p. 800]).

If the number of stars is not conserved, which can be true for times larger than
the relaxation time trelax, the collisionless Boltzmann equation should be adjusted by
a correction term on the left side of Equation 3.16. Since this is not the case for the
Hyades this will not be discussed here.

3.3. King Model

Star clusters are not unlimited in spatial extent. The tidal forces of the host galaxy
set a finite boundary to their spatial extent. Thus star clusters are objects consisting
of a finite number of stars with finite velocities limited by the velocity required to
reach the outer boundary of the cluster, where the tidal forces of the galaxy can rip the
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3.3. King Model

stars away. Such models with a certain cutoff velocity were discussed by King [1966].
According to King [1966] a suitable distribution function for the energy of the stars in
the cluster is given by:

fK(ε) =

ζ
[
exp
(

ε
σ2

)
− 1
]

ε > 0

0 ε ≤ 0
(3.17)

where ζ = ρ (2πσ2)
− 3

2 is some constant and ε = Ψ(r)− v2

2
is the relative energy. For

the relative potentialΨ(r) = Φt−Φ(r) the constant Φt is chosen such that at the outer
boundary of the star cluster the relative potential Ψ vanishes (see Binney & Tremaine
[2008, p. 222,232]). Thus a relative energy of zero corresponds to the ability to reach
the outer boundary of the star cluster.

King models can be simply characterized by one parameter W0, called the King
parameter. The King parameter is given by:

W0 =
Ψ(0)

σ2
(3.18)

where Ψ(0) is the value for the potential in the cluster centre and σ the King velocity
dispersion (Binney & Tremaine [2008, p. 235]) as in Equation 3.17. The King radius rK
describes the size of the flat core and can be expressed in terms of the central density
%0, the King velocity dispersion σ and the gravitational constant:

rK =

√
9σ2

4πG%0
(3.19)

Another characteristic value is the ”concentration” c of a King model, where:

c = log10
(
rt
rK

)
(3.20)

rt is the limitting radius: the radius where the density of the King model drops to zero.
It is not equal to the Jacobi radius presented in Equation 3.8. To obtain the density of
the King model Equation 3.17 is written in terms of Ψ as well as the velocity v and
then integrated over all velocities. This yields the density in terms of Ψ and therefore
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3. Open star clusters - Models and properties

implicitly for all radii.

%K(Ψ) = 4πζ

∫ √
2Ψ

0

[
exp

(
Ψ− 1

2
v2

σ2

)
− 1

]
v2 dv

= ρ

[
exp

(
Ψ
σ2

)
erf
(√

Ψ
σ

)
−
√

4Ψ
πσ2

(
1 +

2Ψ
3σ2

)] (3.21)

In this equation erf is the error function. By substituting this into Poisson’s equation
(Equation 2.9) and integrating it numerically one can obtain the potential Ψ as a
function of the radius r. Resubstituting this into Equation 3.21 yields then the density
%k as a function of the radius.

3.3.1. Cluster shape

The cluster shape of Roche volume filling clusters in the presence of the tidal field of
the Galaxy is not spherical as for an isolated cluster. However the shape of the star
cluster in the tidal field can be investigated by looking at the last closed equipotential
surface of the effective potential and by calculating the cluster ellipsoid of the second
order momenta of the space coordinates (compare Röser et al. [2011, ch. 5.1]). The
effective potential Φeff of the star cluster can be expressed as the sum of the Galactic
potential ΦG and a term for the centrifugal potential Φc:

Φeff = ΦG + Φc (3.22)

In Galactic coordinates and under the assumption of a Kepler potential for the cluster’s
gravitational potential, which is a good approximation for the outer part of the cluster’s
potential (see Ernst et al. [2010]), the effective potential to second order reads as follows:

Φeff = Φeff,0 − GM√
x2 + y2 + z2

+
1
2

(
β2 − 4

)
Ω2x2 +

1
2
δ2Ω2z2 (3.23)

where β denotes, as before, the ratio of the epicycle frequency κ and the circular
frequency Ω. δ denotes the dimensionless vertical frequency ν

Ω
. The values for (β, δ) =

(1.37, 2.86) were taken for the Milky Way for a cluster radius of 8 kpc. The value of
the effective potential at the last closed equipotential surface can be calculated from
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Fig. 3.1.: Scetch of the last closed equipotential surface of the effective potential of a star cluster
in the tidal field of the Galaxy. The directions of the coordinate axis correspond to
the orientation of the Galactic coordinate system.

the formula for the Jacobi radius (Equation 3.8) and Equation 3.23:

Φeff,last = Φeff,0 − 3
2
GM
rJac

(3.24)

From this the dimension of the cluster in units of the Jacobi radius can be calculated.
In x-direction this is simply the Jacobi radius xmax = rJac itself while in y-direction
this gives a value of ymax = 2

3
rJac. In z-direction the maximal distance from the cluster

centre for the last closed equipotential surface is given by zmax = 0.503 rJac. A sketch
of the last closed equipotential surface of a star cluster in the tidal field of the Galaxy
can be found in Figure 3.1.

The second order momenta ellipsoid of the cluster can be calculated in the same
way the moment of inertia tensor is calculated, just calculating the tensor without

19



3. Open star clusters - Models and properties

weighting with the masses.

M =
N∑
i=0


y2i + z2i −xiyi −xizi
−yixi x2i + z2i −yizi
−zixi −ziyi x2i + y2i

 (3.25)

This results in a symmetric tensor and hence this tensor can be diagonalized with the
eigenvalues X̂, Ŷ and Ẑ and the associated eigenvectors x̂, ŷ and ẑ. The eigenvectors
can be investigated to calculate the orientation of the cluster ellipsoid relative to the
galactic coordinate systemwhile the eigenvalues can be used to calculate the semi-major
axis:

ηk =
1√
k̂

(3.26)

where ηk is the semi-major axis in the kth direction and k = x̂, ŷ, ẑ. The orientation of
the ellipsoid is indicated by calculating the angles Ψ, Φ and Θ, whereat Ψ is the angle
between the X-axis and the projection of x̂ onto the XZ-plane, Φ the angle between
the X-axis and the projection of x̂ onto the XY-plane and Θ the angle between the
Y-axis and the projection of ŷ onto the YZ-plane (see Figure 3.2).

3.3.2. Velocity dispersion

The velocity dispersion tensor is given by the equation:

σ2
ij ≡ (vi − vi)(vj − vj) = vivj − vivj (3.27)

Binney & Tremaine [2008, eq: 4.26]
where vi and vj are the mean values of the velocity in the considered direction and the
mixed term vivj is given by:

vivj =
1

µ(x)

∫
vivjf(x,v) dv µ(x) :=

∫
f(x,v) dv (3.28)

In this connection µ(x) specifies the spatial probability density of finding a star at
position x independent of its velocity v. For N individual stars with given velocities
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Fig. 3.2.: Top shows the star cluster ellipsoid and the orientation of its principal axis in the
Galactic coordinate system. Bottom shows where the anglesΨ, Φ andΘ are measured
to determine the orientation of the cluster ellipsoid.
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3. Open star clusters - Models and properties

this can be written as:

vivj =
1

N

N∑
k=0

vivj (3.29)

Equation 3.27 yields for the three space directions the following velocity dispersion
tensor:

σ2 =


σ2
xx σ2

xy σ2
xz

σ2
yx σ2

yy σ2
yz

σ2
zx σ2

zy σ2
zz

 (3.30)

This is as before the moment of inertia tensor a symmetric tensor so that one can find
a basis B in which the tensor is diagonal with the eigenvalues σx̂, σŷ and σẑ .

σ2 =

σ
2
x̂ 0 0

0 σ2
ŷ 0

0 0 σ2
ẑ

 (3.31)

The coordinate system B in which this tensor is diagonal build the principal axes for
an ellipsoid with semi-major axis lengths given by 1

σx̂
, 1
σŷ

and 1
σẑ
. This ellipsoid is called

velocity ellipsoid. And as before the relative orientation of the axis of the coordinate
system B compared to the Galactic coordinate system yields the relative orientation of
the velocity ellipsoid in the main coordinate system (see Figure 3.2).

For a star cluster in dynamical equilibrium (which is mainly true for stars within
its Jacobi radius) the virial theorem 2T = −V holds approximately, where T is the
total kinetic energy and V the total potential energy of the isolated cluster (Binney &
Tremaine [2008, p. 360]). The kinetic energy of a star cluster is given by:

T =
1
2

N∑
i=1

miv
2
i =

1
2
M
〈
v2
〉

(3.32)

where N is the total number of stars in the system,mi and vi are the mass respectively
the velocity of the individual stars, M the total mass of the system and 〈v2〉 is the
mean-squared velocity of the system. Therefore from the virial theorem one can derive
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Fig. 3.3.: Rotation curve of the Milky Way. Shown are the rotation curves of the components
of the Milky Way as well as the entire rotation curve of all components. The vertical
line indicates the position of the sun at 8 kpc.

the squared velocity dispersion as follows:

σ2 =
〈
v2
〉
=

|V |
M

(3.33)

This equation can be used to proof whether a given star cluster is in dynamical equilib-
rium or not.

3.4. Galactic potential

In this thesis a three-component Plummer-Kuzmin model is used to model the potential
of the Milky Way, consisting of components for the Disk, the Bulge and the Halo. The
Plummer-Kuzmin model is a composition of the spherical symmetric Plummer model
and the axisymmetric Kuzmin disk (see Miyamoto & Nagai [1975]).
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3. Open star clusters - Models and properties

The Plummer model is a model with finite mass and corresponds to a stellar polytrope
model of index n = 5. The distribution function is given by:

fP (ε) =

ζε
7/2 ε > 0

0 ε ≤ 0
(3.34)

(Binney & Tremaine [2008, eq. (4.83)]) where ε = Ψ(r) − v2

2
is the relative energy

and Ψ(r) = Φt − Φ(r) is the relative potential. The corresponding potential for the
Plummer model is then given by:

ΦP (r) = − GM√
r2 + b2

(3.35)

(Plummer [1911], Binney & Tremaine [2008, eq. (2.44a)]). The equation for the potential
of the Kuzmin disk in cylindrical coordinates (R, z) is given by:

ΦKZ(R, z) = − GM√
R2 + (a+ |z|)2

(3.36)

(see Miyamoto & Nagai [1975], Binney & Tremaine [2008, eq. (2.68a)]). From Equation
3.35 and Equation 3.36 the potential of the Plummer-Kuzmin model follows as:

Φ(R, z) = − GM√
R2 + (a+

√
z2 + b2)2

(3.37)

which for a = 0 reduces to a Plummer model (Plummer [1911]) and for b = 0 to a
flattened Kuzmin disk. The corresponding density distribution is given by:

%(R, z) =

(
b2M

4π

)
aR2 + (a+ 3

√
z2 + b2)(a+

√
z2 + b2)2[

R2 + (a+
√
z2 + b2)2

]5/2
(z2 + b2)3/2

(3.38)

(Miyamoto & Nagai [1975])
The parameters for the three-component Plummer-Kuzmin model of the Milky Way

can be found in Table 5.1.
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4. Distance determination with the
convergent point method

For nearby star clusters like the Hyades the convergent point method is a suitable
method to three-dimensionally resolve the star cluster. For this purpose the proper
motions of individual stars are used to resolve the star cluster along the line of sight by
determining the individual distances of the stars from the sun. This method was used by
i.e. van Leeuwen [2009]; Röser et al. [2011] to resolve the Hyades three-dimensionally.
Basic assumptions for this method are that all cluster-member stars have the same
space velocity and that they have the same age and metallicity. Another advantage
of this method is that by determining the membership through the proper motion
the internal velocity dispersion can be estimated. The underlying equations for this
method will be introduced in this chapter and the procedure of the convergent point
method will be discussed.

4.1. Transformation of proper motion

The derivation of the connection between proper motion and space velocity follows
from the conversion of spherical coordinates to cartesian coordinates and the time
derivative of the position vector in spherical coordinates. The derivation given here
follows the one in van Leeuwen [2009, eq. 1 to 6]. The position vector of a star or the
cluster centre in the Galactic rectangular coordinate system X,Y, Z is R = [x, y, z],
where X is the axis with direction towards the Galactic centre, Y the axis pointing in
the direction of Galactic rotation and Z the axis pointing towards the Galactic north
pole. The representation of the vector R in Galactic longitude and latitude is given by
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4. Distance determination with the convergent point method

the transformation into spherical coordinates [R, l, b] by:

R = R ·


cos(l) cos(b)

sin(l) cos(b)

sin(b)

 (4.1)

where R =
√
x2 + y2 + z2 is the distance from the sun to this point and l and b are

the Galactic longitude and accordingly the Galactic latitude of this point. From this the
velocity vector can be determined by time derivative.

Ṙ =


cos(l) cos(b) − sin(l) − cos(l) sin(b)

sin(l) cos(b) cos(l) − sin(l) cos(b)

sin(b) 0 cos(b)

 ·


Ṙ

R l̇ cos(b)

R ḃ

 (4.2)

In this connection the vector on the right relate to the observed velocity components.
Therefore the components of this vector can be written in terms of the radial velocity
and the proper motion.

Ṙ = Vrad

R l̇ cos(b) = κµl∗
$

R ḃ = κµb

$

(4.3)

In this equation κ = 4.74047 is the conversion factor from 1mas·yr−1 at 1 kpc to
1 km·s−1, $ the secular parallax and µl∗ ≡ µl cos(b) the proper motion in l-direction,
respectively µb the proper motion in b-direction. Now Equation 4.2 can be inverted
and the observed velocity vector can be expressed in terms of the space velocity vector
so that the transformation from space velocity to proper motion and radial velocity is
given. 

Vrad

κµl∗
$

κµb

$

 =


cos(l) cos(b) sin(l) cos(b) sin(b)

− sin(l) cos(l) 0

− cos(l) sin(b) − sin(l) cos(b) cos(b)

 · Ṙ (4.4)
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4.2. Convergent point method

With this transformation and the assumption that all stars in a star cluster move with
the same space velocity (which is assumed to be the space velocity of the cluster center)
the proper motion of the individual stars for every point on the sky can be determined
from the cluster’s barycentre motion. For this the velocity vector of the cluster centre
is left multiplied with the matrix from Equation 4.4, which for short now is called Ai.
The matrix from Equation 4.2 will be called A−1

i from now. The index i was added to
reference individual stars in the cluster with individual (li, bi). So the relation between
space velocity of the cluster centre Ṙ and proper motion reads:

vi = AiṘ =


Vrad

κµl∗
$

κµb

$

 (4.5)

In the same way the space velocity vector for every point on the sky can be calculated
from the observed proper motion, the observed parallax and the measured radial
velocity by multiplying with the matrix from Equation 4.2.

Ṙ = A−1
i vi (4.6)

4.2. Convergent point method

Stars of a star cluster are gravitational bound to each other and therefore share nearly
the same space velocity apart from some internal velocity dispersion. Since not to
distant star cluster occupy enough space at the sky, the projection of the space velocities
of each star onto the plane perpendicular to the line of sight creates a direction towards a
common point called convergent point (compare Figure 4.1). Another way to determine
the direction towards the convergent point is to take the velocity of the centre of mass
of the star cluster and calculate its projection onto the plane perpendicular to the line of
sight. This vector directly points towards the convergent point. With the assumption
that all cluster members share the same space velocity one can then establish a criteria
to test the membership of stars to a certain star cluster by determining the distances to
the stars by their proper motions. For that purpose the proper motion has to be split
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bl
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Fig. 4.1.: Connection between space velocity and proper motion and the occurrence of a
convergent point as a result of projection. The red arrows on the sphere represent
the nearly parallel space velocities of the stars while the arrows on the plane on the
right represent the proper motion of the stars.

into a part parallel to the direction of the convergent point and one part perpendicular
to that. If the velocities of the stars were all the same as the star cluster’s centre of mass
velocity the latter one would be zero. But since this is not true, the component of the
proper motion perpendicular to the direction towards the convergent point can be used
to study the velocity dispersion in a star cluster while the proper motion component
parallel to the direction of the convergent point can be used to determine the distance
to the star.

4.2.1. Distance determination

The actual direction towards the convergent point depends on the position on the sky.
So for every star one has to calculate the appropriate direction towards the convergent
point and from the given cluster velocity one has to calculate the predicted proper
motion for this star. By comparing this value with the measured value for the proper
motion, the secular parallax and hence the distance of the star can be determined.
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Fig. 4.2.: Left shows the position vector of a star cluster (red arrow), its space velocity (blue
arrow) and the coordinate system for the cluster velocity with the three axis for radial
velocity vr and tangential velocity in l and b direction. Right shows the velocity
coordinate system from the left and prescribes how the cluster velocity vector (blue
dashed arrow) is decomposed into radial and tangential velocity vector (blue solid
arrows). The red arrows indicate the velocity components in l and b direction.

Therefore a rotation has to be applied to the measured proper motion so that it is
aligned with the direction towards the convergent point. This is done by multiplying
the measured velocity vector given in Equation 4.5 with the matrix:

Bi =


1 0 0

0 cos(ψi) sin(ψi)

0 − sin(ψi) cos(ψi)

 (4.7)

The angle ψi is determined for every star by the predicted proper motion calculated
with equation Equation 4.5 from the cluster’s space velocity:

ψi = arctan
(
µb,i,p

µl∗,i,p

)
(4.8)

where the index p refers to the fact that the used proper motions are predicted ones.
With this rotation the proper motion component parallel (µ||) to the direction towards
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Fig. 4.3.: Observed proper motion components parallel and perpendicular to the direction
towards the convergent point (blue arrow). Also shown are the observed components
of the proper motion in l and b direction (dashed red lines). The dashed black lines
indicate the projection of the observed proper motion components in l and b direction
on the direction towards the convergent point.

the convergent point and perpendicular (µ⊥) to this direction can be determined.
Comparison of the observed and rotated proper motion with the calculated velocity
component from the cluster centre of mass in direction to the convergent point yields
the secular parallax $ through:

$ = κ
µ||
v||

(4.9)

where κ is once again the conversion factor from 1mas·yr−1 at 1 kpc to 1 km·s−1, µ||

the observed proper motion in direction towards the convergent point and v|| is the
velocity component of the cluster’s space velocity at the considered point on the sky
in direction towards the convergent point (compare Röser et al. [2011, eq. 2]). Then
the parallax directly leads to the distance of a star through the formula:

d [pc] = 1
$[arcsec]

=
v||

κ · µ||
· 1000 (4.10)

Here the factor 1000 is needed because the distance is given in kpc when it is calculated
from the proper motions given in mas/yr with the conversion factor κ.
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5. Nbody6tid

This chapter presents the program nbody6tid. It will discuss the principles used to
derive numerical solutions to the N -body problem and will explain the procedure to
scale the star cluster to N -body units. In addition the parameters needed to start a
simulation will be introduced and the backwards integration in time to derive the initial
position of the Hyades will be exposed. In a final step the initial position and velocity
of the Hyades will be calculated.
The program nbody6tid is a direct N -body code, developed in the stellar dynamics

group at ARI by Ernst, Just and Spurzem and based on the code Nbody6 by Aarseth
[2003]. It solves the N -body problem in an analytical background potential (for more
details see Ernst [2012]). In contrast to Nbody6 the program nbody6tid includes the
implementation of the Galactic tidal field derived from different approximation for the
Galactic background potential. Some available models are:

• three component Plummer-Kuzmin model (Miyamoto & Nagai [1975])

• power law models

• Dehnen models (Dehnen [1993] and Tremaine et al. [1994])

• and Plummer model (Plummer [1911])

The program also provides evolutionary data for all stars in the simulation and is
available in three different variants:

• nbody6tid, the standard serial code for runs on single CPU systems

• nbody6tidpar, the code for runs on parallel machines (based on nbody6++ by
Spurzem [1999])
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5. Nbody6tid

• nbody6tidgpu, a code version for runs on multicore processors with one or two
GPUs (Nitadori & Aarseth [2012])

For this work the standard code variant nbody6tid was used with a three-component-
Plummer-Kuzmin model of the MilkyWay as background potential (Miyamoto & Nagai
[1975]), whose parameters are shown in Table 5.1. For the solution of the N -body
problem a calculation of the acceleration and higher derivatives of it for any star in the
simulation is required. Since the acting forces in the simulation are due to gravitational
self-attraction of the N stars and the employed background potential, the equation of
motion for gravitation has to be solved. This requires computing times proportional to
N2. For every particle i the acceleration reads:

r̈i = −∇Φ(r)|ri −G

N∑
j=1;j 6=i

mj(ri − rj)

|ri − rj |3
(5.1)

(Aarseth [2003, p. 6])
Given the initial values for mass, position and velocitymi, ri,vi for every star i in the
simulation at some time t0 the set of 3N second-order differential equation defines the
solution for the position ri(t) for every time t. In order to get numerical solutions for
the position one starts to calculate the acceleration for the time t0 and then calculates
the new positions and velocities for the time t1 = t0 +∆t for a small time step ∆t.

vi(t) = r̈i∆t+ vi(t0)

ri(t) =
1
2
r̈i∆t

2 + vi(t0)∆t+ ri(t0)
(5.2)

(see Aarseth [2003, p. 14])
Since this simple approximation leads to considerable errors after a short time, a fourth
order Hermite scheme is used in nbody6tid. This scheme uses Taylor expansions up the
the fourth order as well as the jerk, the time derivative of the acceleration. For detailed
information about the Hermite scheme see Aarseth [2003] and Ernst [2012]. Hence
the computing time depends highly on the size of the time step ∆t and the particle
number N . For small time steps ∆t and large particle numbers N the computing time
increases enormously. But since the number of particles in one simulation is high and
a good accuracy of the integration needs small time steps, one requires a solution to
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Table 5.1.: Galaxy parameters for the 3PLK Milky Way model

Components M [Msun] a [kpc] b [kpc]

Bulge 1.4 · 1010 0.0 0.3
Disk 9.0 · 1010 3.3 0.3
Halo 7.0 · 1011 0.0 25.0

give acceptable computing times. In the N -body code this is done by two algorithms.
One for adjusting the time steps for close encounters, and one to reduce the actual
number of stars for calculating the acting gravitational force.

5.1. Individual and block time steps

Star cluster systems involve many processes acting over different time scales, from
the short time scales of close orbiting binaries (some days) up to the relaxation time
of the whole star cluster. The forces caused by the slower evolving subsystems have
minimal impact on the acting forces on the faster evolving system. So, in order to get a
minimal computing time, the slower evolving subsystems are evaluated with different
time-steps than the fast evolving system. For example, the fast evolving system is
evaluated at every time-step ∆ti while the slow evolving subsystem is evaluated at
every fourth time-step, while for the other time steps its evolution is interpolated.
For the force calculation of close encounters of two bodies there is even another

algorithm called KS-regularization. This involves replacing a close binary by its centre
of mass in the main simulation and just calculating the forces for the centre of mass
without resolving the two stars while the exact orbit of the binary is calculated by
switching to another coordinate system making calculations easier (for more details
see Aarseth [2003]; Khalisi & Spurzem [2006])

5.2. Ahmad-Cohen scheme

This algorithm was first suggested by Ahmad & Cohen [1973]. As stated above, the
full force calculation for every star i makes the simulation very time consuming. Since
the forces acting on a star i generated by very distant stars are small due to the inverse
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5. Nbody6tid

square law of gravitation one can split the forces into two parts using a neighbor
scheme.

ai = ai,irr + ai,reg (5.3)

The first term ai,irr is called irregular force term and is the force generated by stars
within a certain radius around the considered star i. This force underlies a more
frequent change due to the proximity of these stars and therefore is calculated more
often than the second part. The second term ai,reg is called regular force term and
is generated by the stars more distant from the considered star i. These stars do not
change their relative distant as quick as close stars and hence the force created by them
has not to be calculated as often as the irregular term. The result is, that by selecting a
subset of neighbors for every particle i the full summation overN particles in Equation
5.1 reduces to a summation over Nnb neighbor particles and so the computation time
reduces (compare Aarseth [2003, p. 32ff] and Khalisi & Spurzem [2006]).

5.3. Nbody-units

The program nbody6tid uses special N -body-units, which are obtained by setting the
gravitational constant G and the initial cluster massM and the virial radius rvir equal
to 1. With the formula for the virial radius

rvir =
GM2

4|E|
(5.4)

a total energy E equal to -0.25 is calculated. These definitions of gravitational constant,
mass and virial radius also determine the unit of velocity and time. With the typical
velocity for stars in a cluster:

vNB =

√
GM
rvir

(5.5)

the unit of velocity has the value vNB = 1. And by assuming rvir as a typical length
one unit of time gets:

τNB =
rvir
vNB

=

√
r3vir
GM

=
GM 5/2

(4|E|)3/2
= 1 (5.6)
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In the last step the formula for the virial radius and the velocity were plugged in. With
the formula for the crossing time inside a star cluster:

tcr =
GM 5/2

(2|E|)3/2
(5.7)

the crossing time in N -body-units is simply given by: tcr = 2
√
2τNB (c.f. Khalisi &

Spurzem [2006]).

In physical units it is convenient to express the length scales R in pc, the stellar
mass M in M�, the time scale T in Myr and the velocity in V in km·s−1. Then the
conversion from N -body units to physical units is simply done by

rph [pc] = R · r [NBU ]

mph [M�] =M ·m [NBU ]

tph [Myr] = T · t [NBU ]

vph [km·s−1] = V · v [NBU ]

(5.8)

whereNBU stands for oneN -body unit of the considered scale. The conversion factor
R for the length scale andM for the mass directly arises from the definition of one
N -body unit of length and mass. So that R = rvir andM = Mcl = Nmmean, where
mmean is the mean mass of a star in the star cluster. The conversion factor for the time
unit is obtained by taking the second part of Equation 5.6 and plugging in the numbers
to express rvir in [pc],M in [M�] and the value ofG = 4.48 · 10−3 pc3·M−1

� ·Myr−2. This
yields a numerical factor of 14.94 and converting to the cluster parameters for length
R and massM gives

T = 14.94 ·

√
R

3

M
(5.9)

The conversion factor for the velocity is obtained in the same way by using Equation
5.5 and plugging in physical units for G,M and rvir and converting to cluster scales so
that one gets:

V = 6.71 · 10−2 ·
√
M

R
(5.10)

(cf. Aarseth [2003]).
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5.4. Input files

The simulation program nbody6tid requires two files with input parameters. One is
used for the description of the galaxy and its tidal field, and is called galax.dat. The other
is used for the parameters of the star cluster and is called inmodel. Once the parameters
for the host galaxy of the star cluster are chosen the file galax.dat can be generated and
used for every star cluster model in this particular galaxy. The parameters in galax.dat
are given in physical units and scaled to N -body units in the program after specifying
the scaling parameters. In contrast the file inmodel has to be adjusted for every new
star cluster simulation.

5.4.1. Input file: galax.dat

The file galax.dat takes 28 different parameters to characterise the host galaxy. Among
them are the galactic centre position and velocity as well as the type of the galaxy
model and its mass. Further parameters relate to dynamical friction and treatment of
cluster mass (constant or evolving) or the accuracy of galactic center integration (Ernst
[2012, p. 13]). As a galaxy model for the simulations in this work a three component
Plummer-Kuzmin-model (3PLK) (Miyamoto & Nagai [1975]) with parameters given in
Table 5.1 was chosen. The galactic centre position and velocity for the starting point
of the simulation were determined by a backwards integration (see section 5.5) of the
present-day position and velocity of the Hyades barycentre. The calculated values for
the cluster position and velocity 625Myr ago can be found in Equation 5.14..

5.4.2. Input file: inmodel

The file inmodel takes 95 parameters for the modeling of the star cluster. The most
important are: the total number of stars, a random number seed, the scaling factors
for conversion from N -body units to physical units for the mass and the size of the
cluster, a time termination parameter, a parameter for choosing a star cluster model
and its initial mass distribution. A description of all other parameters can be found in
Khalisi & Spurzem [2006]. For the simulations done in this work most parameters were
chosen the same as for the work in Ernst et al. [2011]. Just the shape of the IMF for the
initialization of stellar masses and the ratio of initial RJac/R99% was changed. And this
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Fig. 5.1.:Three dimensional orbit of the Hyades as result of the integration in the three-
component-Plummer-Kuzminmodel of theMilkyWay. The time 0Myr corresponds to
the present time while−625Myr corresponds to the time when the Hyades originated.
The red star shows the today’s position of the sun.

involves a change of particle number and scaling factor for mass and length. Detailed
prescription of the procedure of changing this values can be found in section 7.1.

5.5. Path integration

For the simulation of the Hyades evolution over the past 625Myr one needs the initial
conditions for the Hyades barycentre at the start time of the simulation. To obtain the
position and velocity for the Hyades barycentre 625Myr ago the centre of mass orbit
was integrated backwards in time in the analytical background potential of the Milky
Way starting with the present-day position and velocity of the Hyades. The resulting
orbit around the Galactic centre is shown in Figure 5.1. The Hyades completed nearly
3 full orbits in its lifetime up to now. The direction of rotation is clockwise around
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5. Nbody6tid

the Galactic centre seen from the Galactic north pole. In the Galactic plane the orbit
is slightly eccentric with radii between 7.087 kpc and 8.638 kpc. In z-direction the
Hyades show an oscillation up to a height of 74 pc either side of the Galactic disk (Ernst
et al. [2011]). The backwards integration is calculated in galactocentric coordinates.
For the present-day position of the Hyades in galactocentric coordinates the values of
Ernst et al. [2011] were taken:

x0 = −44.26 pc− 8000 pc

y0 = 0.31 pc

z0 = −16.89 pc+ 20 pc

(5.11)

where the first terms in Equation 5.11 relate to the Hyades barycentre with respect
to the position of the sun (8 kpc from the Galactic centre). The second terms are the
result of the translation of the point of origin from the sun to the Galactic centre. For
the position of the sun in the Milky Way the values of Piskunov et al. [2006] were used.
The present-day velocity of the Hyades with respect to the sun is given by:

vx,0 = −41.18 km·s−1

vy,0 = −19.04 km·s−1

vz,0 = −1.27 km·s−1

(5.12)

To convert this into galactocentric velocities the velocity of the peculiar motion of
the sun with respect to the local standard of rest (LSR) and the orbital velocity of the
LSR have to be taken into account. For the velocity of the Hyades centre of mass with
respect to the Galactic centre follows:

vx,0 = −41.18 km·s−1 + 11.10 km·s−1

vy,0 = −19.04 km·s−1 + 12.24 km·s−1 + 234.20 km·s−1

vz,0 = −1.27 km·s−1 + 7.25 km·s−1

(5.13)

The first terms in Equation 5.13 are the velocities of the Hyades centre of mass with
respect to the sun, the second terms correspond to the sun’s peculiar motion with
respect to the LSR (Schönrich et al. [2010]) and the third term corresponds to the orbital
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velocity of the LSR around the Galactic centre at 8 kpc.

For a backwards integration in time the integrator takes the galactocentric position
and the negative galactocentric velocity (because its going backwards in time) of the
Hyades barycentre. The result of the integration leads to the position and the velocity
of the Hyades barycentre 625Myr ago. To obtain the right velocity the sign of the
velocity has to change once again to give an orbit forward in time. The resulting
position and (forward in time) velocity of the Hyades are:

x−625 = −7212.38 pc

y−625 = −1566.08 pc

z−625 = 66.63 pc

vx,−625 = −78.06 km·s−1

vy,−625 = 236.68 km·s−1

vz,−625 = −1.03 km·s−1

(5.14)

Since nbody6tid works in a coordinate system with origin in the cluster barycentre
one has to convert the given position and velocity of the Hyades barycentre into
coordinates and velocities for the galactic centre with respect to the cluster centre.
Therefore the signs of the position and the velocity changes again when creating the
input file of nbody6tid.

5.6. Star cluster initialization

For the initialization of the star cluster masses, positions and velocities for each star
have to be calculated consistent with the chosen star cluster model. For this work a King
model with King-parameterW0 = 6 was used. Positions and velocities were calculated
by an external program called rotinit. The program randomly assigns positions and
velocities to the stars under the constraint that the conditions of the King model are
fulfilled. The program takes as parameters a random number seed and the number
of stars of the star cluster. The masses of the stars are calculated by nbody6tid itself
using a routine by Kroupa and Weidner (see within Ernst et al. [2011]). They are drawn
randomly from a specified initial mass function (IMF). For this work a three-part broken
power law IMF giving the number of stars for logarithmic mass intervals was used.
The IMF was adapted by the author while a project lab from new observational data of
the Hyades provided by Goldman et al. [in press]. The IMF for the three different mass
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intervals reads:

dN
dlogm

=


c1m

+2.0, 0.08 ≤ m [M�] < 0.18

c2m
0.0, 0.18 ≤ m [M�] < 1.00

c3m
−3.3, 1.00 ≤ m [M�] < 100

(5.15)

The constants c1 to c3 are determined by normalization and the requirement of a smooth
transition between the mass regimes. In the simulation the lowest and the highest
mass were forced to take the valuemlow = 0.08M� andmhigh = 100M�.
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This chapter deals with the observational data used for this thesis. It will present
the principle of choice used to determine Hyades member candidates as well as the
observed properties studied in this work.

The observational data used for this work is a new data set of 774 Hyades stars
provided by Goldman et al. [in press] containing Hyades stars down to masses as low
as 0.09M�. This data set contains, among other information, the mass, the position,
luminosity and the proper motion of the Hyades stars. With the convergent point
method information about the velocity perpendicular and parallel to the convergent
point, the radial velocity as well as parallax values were calculated. The basis for
this data file was a data set provided by Röser et al. [2011] using the PPMXL (Roeser
et al. [2010]) and CMC14 (Copenhagen University et al. [2006]) catalogues. The new
reduction by Goldman et al. [in press] with the Pan-STARRS1 (Panoramic Survey
Telescope And Rapid Responce System) catalogue complements the data set by Röser
et al. [2011] down to 0.09M�. Both reductions use a three step membership selection
process for theHyades stars. Initially, member candidates are selected by the convergent
point method (section 4.2) predicting also radial velocities. Then the created sample
will be restricted by a photometric membership selection, and in the last step the proper
motions given by Pan-STARRS1 will be verified by cross-checking with PPMXL entries
extrapolated to the epoch of observation by Pan-STARRS1. Thus the proper motions
are verified or further candidates will be rejected. In this process of membership
determination a small fraction of non-member stars remain in the sample of member
stars. According to Goldman et al. [in press] the contamination with field stars in
the pure sample is <10% for distances to the cluster centre smaller than 18 pc. In the
outer shell from 18 pc to 30 pc the contamination rises to 17%. Goldman et al. [in press]
expect almost all contaminants to be dwarfs (92%), with few giants (8%).
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Table 6.1.: Parameters of the Hyades determined from the observations. The numbers in
parentheses refer to the clean sample with |v⊥| ≤ 2 km·s−1

Quantity Value
Lowest massml 0.09M�
Highest massmh 2.6M�
Maximum radius rmax 30 pc
Number of stars N(rmax) 773 (668)
Total massM(rmax) 477.8M� (424.71M�)

Jacobi radius rJ 8.4 pc (8.2 pc)
Number of stars N(rJ) 363 (334)
Total massM(rJ) 270.7M� (252.8M�)

Core radius rc 3 pc
Number of stars N(rc) 100 (91)
Total massM(rc) 102.8M� (95.5M�)

Completeness limit 0.1M�

6.1. Membership determination

6.1.1. Kinematic selection of candidates

For the kinematic selection of Hyades member stars the convergent point method
(section 4.2) with the constraint that cluster membership is given if the difference
between cluster velocity vc and velocity of the candidate v is smaller than some
limiting boundary ε

|vc − v| ≤ ε (6.1)

(c.f. Röser et al. [2011, eq. (1)]) is used. Since the radial velocity is not observed but
fixed by this method to be the same as the projection of the cluster centre of mass
velocity onto the line of sight and the velocity parallel to the direction towards the
convergent point is fixed to be the same as that calculated from the cluster centre of
mass velocity for the position of the star on the sky, Equation 6.1 reduces to:

|v⊥| ≤ ε (6.2)

(Röser et al. [2011, eq. (2)]) Furthermore the expectation value of v⊥ is zero and hence
〈v2⊥〉

1/2 is an estimate for the one-dimensional velocity dispersion in the cluster.
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In the work of Goldman et al. [in press] the limiting boundary ε was choosen to
be 4 km·s−1; additionally the angle between the direction towards the convergent
point and the proper motion vector was limited to a maximum value of 9.5°. To
guarantee a more pure sample, the candidates chosen in Goldman et al. [in press] can
be further restricted to have a perpendicular velocity |v⊥| ≤ 2 km·s−1. According to
Goldman et al. [in press] this reduces the field contamination by a factor of two while
a value of 2 km·s−1 is still much larger than the internal velocity dispersion of the
cluster (compare subsection 7.5.1). This selection of Hyades probable members is not a
final confirmation since radial velocity and kinematic parallax and thereby distances
are predicted. These quantities can be confirmed by using the kinematic parallax to
construct the color-magnitude diagram, and to check if the positions of the candidate
stars in this diagram are valid or not.

6.1.2. Photometric membership determination

With photometric membership determination, the color-absolute-magnitude diagrams
for the candidates, which have passed the kinematic selection, are created. In these
diagrams true Hyades member stars should lie on a narrow sequence, while field
stars should form a cloud below this sequence. Field stars lie below the Hyades
sequence because of the proximity of the Hyades to the Sun while field stars are farther
away from the sun than the Hyades. As stated in Goldman et al. [in press] available
theoretical isochrones do not fit the Hyades sequence. Thus the Hyades sequence in
the color-absolute-magnitude-diagrams is modeled with a second order polynomial to
set the photometric criteria for membership.

The reason why the field stars do not share the Hyades sequence is that the absolute
magnitude calculated by the kinematic parallax, and determined on the basis of the
convergent point method, is to small. Hence the stars are fainter than stars at the
distance of the Hyades should be. Therefore the calculated secular parallax for the field
stars could not be true. They have to be farther away from the Sun and thus lie behind
the Hyades such that their proper motion fits that of Hyades stars just by chance.
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6.2. Observational quantities

From the observational data file, different distinctive quantities such as the mass
function, the cumulative mass profile, the density profile, the average cumulative mass
function, the shape of the cluster and its velocity dispersion were determined. The
same quantities were determined for the simulations and compared to that of the
observations.

6.2.1. Cumulative mass profile

Another way to compare the observational properties of the Hyades with the simulation
is the cumulative mass profile. This is the mass of the star cluster as a function of the
radius. To get the mass of the star cluster as a function of the radius, all the masses of
the stars within a given radius from the cluster centre are summed up. This is done for
several values of the radius from the cluster centre. The resulting curve is shown in
Figure 7.3. In the inner part up to the Jacobi radius, the increase of the mass cumulative
mass function corresponds well to a isothermal density profile with % ∝ r−2, while
in the outer part the stars are ripped away by the tidal forces of the Galaxy so that
the trend of the mass function is declining. One way to quantify the agreement of
observed and simulated cumulative mass profile is with the Kolmogorov-Smirnov-test
(compare Smirnov [1948, 1939]). This test is also used to determine the agreement of
the cumulative mass profiles for different initial values of ξ with the observations and
to find the best fitting model among them.

6.2.2. Kolmogorov-Smirnov-test

The Kolmogorov-Smirnov-test is a statistical test to analyse whether two random
variables follow the same empirical distribution function or not, and was suggested
by Smirnov [1939]. For the test procedure the vertical difference di between two
normalized cumulative functions is calculated for all data points within the sample and
the supremum dmax is selected. For the cumulative mass profile of observation and
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Table 6.2.: Values of Dα for different statistical significances α

Level of significance Dα

20% 1.07
10% 1.22
5% 1.36
2% 1.52
1% 1.63

0.01% 2.23

simulation this means:

di(ri) =

∣∣∣∣ Mobs(ri)

Mobs(rmax)
− Msim(ri)

Msim(rmax)

∣∣∣∣
dmax = sup

ri

d(ri)
(6.3)

In this equation Mobs(ri) refers to the value of the cumulative mass profile of the
observation at the radius ri, Mobs(rmax) to the total mass within a given maximal
radius rmax and Msim(ri) and Msim(rmax) to the same quantities of the simulation.
The index i refers to the ith data point in the sample. The higher the value dmax the
worse the accordance of the two cumulative mass profiles. By rescaling the calculated
value of dmax to the number n,m of data points in the samples one can also give an
estimate of the statistical significance of the agreement. The rescaled value of dmax is
calculated as follows:

d̂ = dmax

√
nm
n+m

(6.4)

where n is the number of data points in the simulation andm the one in the observations.
If the value of d̂ is higher than a given value Dα the agreement of the two cumulative
mass profiles can be rejected with a statistical significance α. The value of Dα for
different statistical significances α is given in Table 6.2.

6.2.3. Mass function

The first characteristic quantity for comparing observations and simulations is the
present-day mass function, the number of stars within a certain mass range. For the
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Hyades the mass function is calculated in logarithmic mass bins of 0.1 dex size. It
starts with a lower mass limit of 0.08M� and ends at a high mass limit of about 2.5M�.
The present-day mass function is calculated for 3 radii regimes of 3 pc (the core), 9 pc
(Jacobi radius) and 30 pc from the cluster centre. In a log-log-diagram the shape of
the mass function follows a three-component broken power law similar to the initial
mass function. The comparison of the present-day mass function of observation for
the whole sample and for the clean sample (just those stars with v⊥ < 2 km·s−1) as
well as the ensemble 2750W6 is shown in Figure 7.5.

6.2.4. Mass segregation

The equipartition of kinetic energy due to two body relaxation leads to a slow down
of massive stars and a speed up of low mass stars. Therefore the low mass stars can
reach higher orbits in the star cluster while the massive stars sink down into lower
orbits deeper in the cluster centre. Thus this phenomenon leads to a separation of the
stars by mass, called mass segregation. The mass segregation can be seen by plotting
the mean stellar mass as a function of radius from the cluster centre. Another way to
quantify the mass segregation in a star cluster is the minimum spanning tree method
(Olczak et al. [2011]). The minimum spanning tree is the sum over all connection
lines of a graph connecting all vertices within a given sample of stars with the lowest
possible sum of edges and no closed loops. Thus the length of this graph is a measure
of compactness of a sample of stars in the star cluster. An algorithm for the derivation
of the spanning tree is given in Gower & Ross [1969]. An improved method for the
minimum spanning tree ΓMST is given in Olczak et al. [2011]. With this method one
can obtain information about the compactness of samples of objects but not about
their actual position in the star cluster. However, since the average cumulative mass
indicates a mass segregation towards the centre of the star cluster, this method can
quantify the indicated mass segregation. As a measure of mass segregation Olczak
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et al. [2011] define the dimensionless value ΓMST :

ΓMST =
γrefMST

γmMST

γMST =

(
n∏

i=1

ei

)1/n

= exp

(
1

n

n∑
i=1

ln(ei)

) (6.5)

where ei is length of the ith edge of the spanning tree. The superscript ref refers to
a random sample of n+ 1 stars out of the entire population while the superscriptm
refers to a sample of the n+ 1 most massive stars.
No mass segregation leads to a value of ΓMST = 1, while a mass segregated cluster

should hold a value of ΓMST > 1. The higher the value of n of the sample of considered
stars, the lower the value of ΓMST so that if n is equal to the whole sample of stars one
obtains ΓMST = 1.

6.2.5. Velocity dispersion

The velocity dispersion in one dimension k for data with N stars in the sample can be
calculated according to Equation 3.27 by:

σ2
k =

1
N − 1

N∑
i=1

(vi − v)2 (6.6)

where vi is the velocity of the ith star and v is the mean velocity of the sample. For the
observations this result must be corrected for the measurement errors to obtain the
real velocity dispersion. The corrected velocity dispersion can be written as:

σ2
k,corr = σ2

k −
1
N

N∑
i=1

ε2i (6.7)

In this equation εi is the measurement error of the velocity of the ith star. The mean
errors of the velocity dispersion are then computed as:

∆σk =
1√
2N

σk +∆εi (6.8)
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where∆εi is the uncertainty of the velocity error determination dependent on the way
the velocity and its error are determined (compare van Altena [2013, p. 365]). Since
there is no information for this value the error component was not calculated and the
uncertainty of the velocity dispersion was taken to be:

∆σk =
1√
2N

σk (6.9)

which is just the randomnoise due to the finite sample of stars in the determination
of the velocity dispersion. Given that the convergent point method predicts that the
velocity dispersion perpendicular to the direction towards the convergent point to be a
measure for the one dimensional velocity dispersion, this value was calculated for the
observations and compared to the value obtained from the simulations.
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This chapter discusses the results of the simulations undertaken in this work. It
will present the topics of interest, the parameters used to start the simulations and
the calculated outputs as well as the evaluated results. First the mass function, the
cumulative mass profile, the density profile and the mass segregation of the ensemble
2750W6 will be explained and the effect of N -body noise on this quantities will be
examined. Afterwards the effect of different initial ratios of Jacobi radius and 99% mass
radius on the evolution of the cumulative mass profile and the mass segregation of star
cluster will be studied. At last a detailed analysis of the velocity dispersion and the
effect of the convergent point method on the distance determination of the stars in the
Hyades will be undertaken.

7.1. Calculation of the scaling factor R

To set up the simulations for the Hyades the parameters for scaling the cluster to
N -body units were calculated according to section 5.3. The initialization with a special
value for RJac/R99% was done by adjusting the value R. With the value RK for the King
radius in N -body units taken from Gürkan et al. [2004, Table 1] and the numerical
calculated value for the ratio R99%/RK, taken from a set of data provided by Andreas
Ernst (priv. com.), the value for R99% in N -body units was calculated as follows:

R99% [NBU ] =
R99%

RK

RK [NBU ] (7.1)

The massMcl of the star cluster was then calculated from the mean stellar mass m
determined by the IMF and the number of stars N in the simulation. From this the
Jacobi radius RJac was determined by Equation 3.8. With the scaling formula from
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Table 7.1.: Parameters for the determination of the scaling factor R

Quantity Value
King radius Rk 0.32 [NBU ]
ratio R99%/RK 11.82
99% mass radius R99% 3.7824 [NBU ]
Mean stellar massm 0.619M�
circular velocity VCir at 8 kpc 234.2154 km·s−1

β = κ/Ω at 8 kpc 1.3664

Equation 5.8 for the length scale, this can be expressed in N -body units:

RJac [NBU ] =
RJac [pc]

R
(7.2)

And it follows, given the ratio for ξ = RJac/R99%, that the scaling factor R reads as:

R =
RJac [pc]

ξ ·R99% [NBU ]
(7.3)

The values for the calculation of the scaling factor R are given in Table 7.1.

7.2. Data processing

The output file of nbody6tid contains for every N -body time step information about
the position, velocity, mass and evolutionary state (after a classification from Hurley
et al. [2000]) of every star. Since only main sequence stars are intended to be compared
to observational data, stars which are non main sequence stars should be removed from
the simulated data. These are mainly black holes, neutron stars and white dwarfs. Black
holes and neutron stars originate from the most massive stars at the beginning of the
simulation. White dwarfs however originate from lower massive stars which original
mass is to low to form a black hole or neutron star. In any case, the majority of the stars
stay unevolved, since an evolutionary time of 625Myr is too short for the evolution of
most main sequence stars in the simulation. For example Padova isochrones yield about
2.6M� for the mass of a star to leave the main sequence in a time scale of 625Myr.
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Table 7.2.: Initial parameters of the ensemble 2750W6

Quantity Value
King ParameterW0 6
Particle number N0 2750
Mean stellar massm 0.619M�
Total massM0 calculated 1702.25M�
Total massM0 from IMF (1688.9± 25.3)M�
Jacobi radius rJ (16.12± 0.01) pc
99% mass radius R99% (36.84± 1.09) pc
ratio RJac/R99% 0.44± 0.01

Therefore all stars below this mass limit stay essentially unevolved over the whole
simulation.
A further correction has to be applied to the density centre of the star cluster. At

the beginning the density centre lies at the origin but with dynamical evolution the
density centre changes. The corrected position of the density centre is calculated with
the method from Casertano & Hut [1985] and the position of every star is subsequently
corrected such that the density centre corresponds to the origin.

7.3. Ensemble 2750W6

In the first part of this work the effect of different random initializations of one model
was investigated. For the Hyades, an improved model of the best fitting model of Ernst
et al. [2011] was adopted. The model was improved by the author during a project lab.
The main parameters of one ensemble averaging ten runs of this model are shown in
Table 7.2. A detailed comparison of the numbers of stars and the masses within different
radii from the cluster centre can be found in Table A.1 in the Appendix. Furthermore a
list with the number of White dwarfs within the cluster can be found in Table A.2 in
the Appendix. A detailed analysis of the effect of the random initialization on

• the mass function

• the cumulative mass profile

• the present day mass function
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Fig. 7.1.: Average realization of the three-part broken power law initial mass function of
ensemble 2750W6. The diagram shows the mean value of the logarithm of the number
of stars log(N) with a mass within a certain mass bin of width 0.1 dex calculated
from the ensemble, averaging over ten runs. The error bars show the 1σ standard
error. The initial particle number of the ensemble 2750W6 is 2750 stars. The analytical
slopes of the broken power law are plotted in blue dashed lines with different line
styles for the different parts. The long-dashed blue line shows the first part in the
lower mass regime, the dotted blue line shows the intermediated flat part and the
short-dashed blue line shows the decreasing part in the high-mass regime.

• the density profile

• and the mass segregation

was undertaken, and detailed below.

7.3.1. Initial mass function and stellar evolution

The initial mass function (IMF) used to calculate the mass of the stars in the simulation
is in a log-log diagram a three-part broken power law. The slopes of the used power law
are given in Equation 5.15. For the mass interval from 0.08M� to 0.18M� the slope is
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Fig. 7.2.: Average realization of the three-part broken power law mass function of ensemble
2750W6 after 625Myr of evolution. The diagram shows the mean value of the loga-
rithm of the number of stars log(N) with a mass within a certain mass bin of width
0.1 dex calculated from the ensemble, averaging over ten runs. The error bars show
the 1σ standard error. The analytical slopes of the broken power law initial mass
function are plotted in blue dashed lines with different line styles for the different
parts. The long-dashed blue line shows the first part in the lower mass regime, the
dotted blue line shows the intermediated flat part and the short-dashed blue line
shows the decreasing part in the high-mass regime.

2.2, for the intermediate-mass interval from 0.18M� to 1M� the mass function is flat
with a slope of 0, and in the high-mass regime from 1M� to the highest mass (taken to
be 100M�) the IMF is decreasing with a slope of −2.5. The average realization of this
IMF in the ensemble 2750W6 is shown in Figure 7.1. The error bars are 1σ standard
error bars calculated from the ensemble, averaging over ten runs, with each an initial
number of 2750 stars. The theoretical trend of the three-part power law is plotted in
blue lines with different line styles for the different components. The long-dashed
blue line shows the first part in the lower mass regime, the dotted blue line shows the
intermediate flat part and the short-dashed blue line shows the decreasing part in the

53



7. Simulation results

high-mass regime. The same plot of the mean value of the logarithm of the number of
stars log(N) with a mass within a certain mass bin of width 0.1 dex calculated from
the ensemble, averaging over ten runs, was created for the end of the simulation after
625Myr of evolution to see the effect of stellar evolution. The result is shown in Figure
7.2. In this plot, as well as in the following diagrams, only main sequence stars are
shown. For illustration the analytical trends of the initial mass function as well were
plotted in dashed blue lines in this diagram. Only the high-mass stars, greater than
2.5M�, have disappeared due to stellar evolution. The rest of the stars stayed relatively
unchanged in their evolution over the time scale of 625Myr.

7.3.2. Cumulative mass profile

Figure 7.3 shows the effect of the random initialization on the cumulative mass profile.
All ten models were initialized by the same number of stars, the same IMF and the
same ratio of RJac/R99%, but with different random number seeds for the distribution
of positions, velocities and masses of the stars. Figure 7.3 shows the observational
data (black lines), the ensemble average cumulative mass profile (thick red line) and
its standard deviation (red area) as well as the best-fitting run (green dotted line) and
a curve calculated from Equation 3.8 showing the mass within a given Jacobi radius
(blue dotted line). The crossing point of this line with the one for the cumulative mass
profile gives the Jacobi radius of the system. Except for the inner most part (r < 2.5 pc)
of the star cluster the relative dispersion of the models is about 1/4. Within the Jacobi
radius the mean value lies well above the observed curve. However the best-fitting
model describes the observed data within the Jacobi radius very well. But the high
dispersion has to be kept in mind while analyzing just one model run. The agreement
of the cumulative mass profiles was quantified by a Kolmogorov-Smirnov-test for the
inner 9 pc region. The value for d̂ for the average of the cumulative mass profiles is
about 2.46. The highest value of a single run was determined to be 2.35. This may be a
hint that simple ensemble averaging is distorting the shape of the cumulative mass
profile and hence not a right approach. However the value for the best-fitting model
(green curve) was calculated to 1.05 while the lowest value obtained for one cumulative
mass profile within the ensemble was 0.72. But by looking at the cumulative mass
profile of this run and comparing it to the observational data one can find that it does
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Fig. 7.3.: Present-day cumulative mass profile of observation and ensemble. The black long-
dashed line shows the observational data for all stars. The short-dashed black line
shows the observational data those stars which have a perpendicular velocity smaller
than 2 km·s−1. The red solid line represents the average cumulative mass profile of
the ten runs, the light red area shows the standard deviation of the ensemble. The blue
dashed line shows the mass within a given Jacobi radius calculated with Equation 3.8.
The green dashed line shows the best-fitting model run.

not really fit better the observational data than a mass profile with higher value for d̂.
Its curve runs nearly parallel to the observed curve and contains more mass within the
Jacobi radius than the observational data (sse Figure 7.4). Therefore finally the decision
for the best-fitting model of the ensemble 2750W6 was done by eye and by quantifying
the result through the Kolmogorov-Smirnov-test. For detailed discussion of the effect
that in special cases the Kolmogorov-Smirnov-test may be useless see section A.2 in
the Appendix. The parameters of the best fitting model are also shown in Table A.4 in
the Appendix.
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Fig. 7.4.: Best-fitting model according to the Kolmogorov-Smirnov-test. The red line shows the
best fitting model according to the Kolmogorov-Smirnov-test, the green line shows
the chosen best-fitting model and the black line shows the observational data (here
the whole sample of stars is used). The blue line as before shows the mass within the
Jacobi radius as a function of radius.

7.3.3. Present-day mass function

Figure 7.5 represents the comparison of the present-day mass function (PDMF) between
observations and simulations for stars within 3 pc (top panel), 9 pc (middle panel) and
30 pc (bottom panel) from the cluster centre. The diagram shows the logarithm of the
average value of the number of stars within a certain mass bin of width 0.1 dex. The
simulated results are shown in red bars where a sample of N = 588± 43 stars within
a radius of 30 pc was used. The error bars show the 1σ standard error calculated from
the ensemble of ten runs. For the whole observational data (dark blue bars) a sample of
N = 773 stars within a radius of 30 pc was used. And the clean observational data (light
blue), of stars with a velocity perpendicular to the line of sight with vperp < 2 km·s−1,
leaving a sample of N = 668 stars to calculate the PDMF (see also Table A.1).
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Fig. 7.5.: Comparison of the PDMFs of observations and ensemble 2750W6 for stars within
3 pc, 9 pc and 30 pc from the cluster centre. Top panel: stars within a radius of 3 pc
(core), middle panel: stars within a radius of 9 pc (Jacobi radius) and bottom panel
stars within a radius of 30 pc from the centre. Shown are for the simulation in red
bars the mean values of log(N) calculated from the ensemble, averaging over ten
runs. The error bars show the 1σ standard error. The dark blue bars show the values
for all stars in the observational data while the light blue bars show the values for
just those stars with vperp < 2 km·s−1.
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The ensemble 2750W6 fits the observational data very well although there is a
difference of 78 stars between the total number of stars within 30 pc in the clean sample
of observations and the simulations. Hence the number of stars in the observation
and simulation do not agree within the uncertainty range of the the number of stars
in the simulation. However, the overall shape of the mass function is reproduced for
all three radii regimes. The observational data shows a nearly bimodal behavior for
the core. There is a lack of stars with a mass from 0.4M� to 0.6M� which does not
occur in the simulation. This could be due to unresolved binaries in the core region,
or as Ernst et al. [2011] stated, this is at the same position as the Wielen dip, related
to the mass-luminosity relation. For the whole radius region of 30 pc there is a slight
overabundance of stars with a mass of ∼ 0.2M� to 0.5M� in the observations. This
could be due to contamination with field stars in the outer part. Another interesting
result is that nearly all massive stars with masses higher than about 1.5M� are located
in the core. This can be seen by comparing the mass function for the innermost 3 pc
with that one of the total radius regime of 30 pc. All stars with a mass higher than
1.5M� within 30 pc can already be found within 3 pc. This can also be seen in Figure
A.2 in the Appendix where the spatial extend of the observed cluster is compared to
the simulated one.

7.3.4. Density profile

The density profile of both simulation and observations are shown in Figure 7.6. The
observed density profile is plotted in blue, the simulated density profile is shown in
red. Both profiles have a flat core and then decrease towards the outer parts of the star
cluster. In the outermost parts (r > 10 pc), beyond the Jacobi radius, the star density
becomes increasingly small (ρ < 0.01M�·pc−3) and hence the noise is very high.
Within the Jacobi radius the observed density is well characterized by the simulation.
It lies in between the dispersion of the ten runs. In the outer part, beyond the Jacobi
radius, the simulated density is to low to fit the observed values. One reason for this is
the contamination with field stars in the observation within this region. In the log-log
diagram the total spread of the simulated density is, apart from the region beyond the
Jacobi radius, nearly constant with a value of about 0.4 dex.
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Fig. 7.6.: Density profile of simulation and observation. The red lines show the ten model runs
of the ensemble 2750W6, the blue line shows the observed density profile. The Jacobi
radius of the ensemble 2750W6 of (9.8± 0.3) pc is marked with a vertical black line.

7.3.5. Mass segregation

To investigate the mass segregation, the mean stellar mass for the observations and
for the beginning of the simulations (625Myr ago) and the end of the simulations
(present-day) was calculated. The average cumulative mass is calculated by summing
up all the masses of the stars within a given sphere around the centre of the star cluster.
Then the cumulative mass is divided by the number of stars within this volume. This
leads to a value for the mean mass of a star in the considered volume. By increasing
the sphere around the cluster centre one can obtain a value for the average cumulative
mass of a star as a function of the radius. The top panel of Figure 7.7 shows the average
cumulative mass at the beginning of the simulation and the bottom panel of Figure
7.7 shows the average cumulative mass of simulation and observation at present-day.
The result for the observations and the simulation for the present-day is an increasing
average cumulative mass in the core of the star cluster. At the tidal radius of 9 pc the
average cumulative mass of a star is about 0.75M�. In the core this value is about
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Fig. 7.7.: Average cumulative mass for observations and simulations. The top panel shows the
average cumulative mass for all model runs of the ensemble 2750W6 at the beginning
of the simulation (625Myr ago). The bottom panel shows the present-day average
cumulative mass profile of observations (blue) and simulations (red) after 625Myr of
evolution. The higher mean mass in the cluster centre is an unmistakeable sign for
mass segregation.
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7.4. Evolutionary effect of initial ratio of Jacobi radius to 99% mass radius

Table 7.3.: Parameters of initial ratio of R50%/RJac and final ratio of R50%/RJac for different initial
ratios of ξ = RJac/R99%

RJac

R99
M [M�]

R50%
RJac

R50%
RJac

(initial)
3 724 0.321± 0.006 0.06± 0.02
2 643 0.315± 0.040 0.106± 0.001
1 728 0.305± 0.003 0.209± 0.003
2/3 848 0.300± 0.027 0.299± 0.004
1/2 1009 0.353± 0.059 0.347± 0.006
2/5 1702 0.429± 0.025 0.410± 0.009

1.15M�. This is an unmistakeable sign for mass segregation in the cluster because this
shows that on average the masses of the stars in the cluster center are higher than in
the outer parts. At the beginning of the simulation the average cumulative mass is
nearly the same over the whole volume of the star cluster (apart from some dispersion
in the core). Its value is as expected the mean stellar mass of ∼0.62M�, calculated
from the IMF. Thus the more massive stars are sinking towards the cluster centre while
low mass stars must be kicked out of the star cluster such that at present-day the
mean stellar mass within 30 pc is larger than the initial mean stellar mass of ∼0.62M�

(compare also subsection 6.2.4). A further investigation of the mass segregation for the
best fitting model of ensemble 2750W6 was done by calculating the velocity dispersion
for different mass bins. This showed as expected a smaller velocity dispersion for the
high mass stars (see Table A.3 in the Appendix). To show the dispersion in the average
cumulative mass profile due to the random initialization all ten runs were plotted in
the diagrams in Figure 7.7.

7.4. Evolutionary effect of initial ratio of Jacobi radius to

99% mass radius

The second part of this work contains an analysis of the effect of initial ratio ξ =
RJac/R99% on the evolution of the star cluster. The higher the value for ξ, the denser
the star cluster. The lower the value for ξ the less closely spaced are the stars in
the cluster. A study of the effect of this initial property was done by adjusting the

61



7. Simulation results

0
50

100
150
200
250
300
350
400
450
500

0 5 10 15 20 25 30

M
(r
)
[M

�
]

r [pc]

RJac

R99%
= 3

RJac

R99%
= 2

RJac

R99%
= 1

RJac

R99%
= 0.66

RJac

R99%
= 0.4

RJac

R99%
= 0.5

M(rJac)

Observations

Fig. 7.8.: Cumulative mass profiles for different initial values ξ = RJac/R99%. The black line
shows the observations, the blue line shows the mass within a given Jacobi radius.

simulations such that at the end of a simulation the Jacobi radius of the different
models was nearly the same. Simulations were run for five different initial ratios of
ξ = RJac/R99%, each with three runs to get some statistic about the dispersion of the
models. Ratios of ξ = 3, 2, 1, 0.5 and 0.4 were chosen. The cumulative mass profile
was investigated for the value of final ratio of R50%/RJac of the half-mass radius to the
Jacobi radius. Furthermore the effect on the mass segregation was tested, using the
average cumulative mass profile and the minimum spanning tree method of Olczak
et al. [2011].

7.4.1. Mass profile - final ratio of half-mass radius to Jacobi radius

To quantitatively study the effect of the initial ratio ξ = RJac/R99% on the mass profile,
the value for the final ratio of half-mass radius R50% to Jacobi radius RJac, R50%/RJac,
was calculated. The half-mass radius R50% was just calculated from the mass within
the Jacobi radius and not from the whole mass within 30 pc. The ratio R50%/RJac gives,
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Fig. 7.9.: Final ratio of R50%/RJac as a function of initial ratios of ξ = RJac/R99%. The red points
show the final value of R50%/RJac, the light blue line shows a least square fit of the
function f(x) = a exp(−bx) + cx+ d to the simulated data. The parameters of the
fit are shown in the top right corner of the plot. The dark blue points show the initial
ratio of R50%/RJac for the different initial ratios of ξ = RJac/R99%. The black dotted line
shows the observed ratio of R50%/RJac = 0.57.

similarly to the initial ratio RJac/R99%, a measure for the mass distribution as a function
of the radius from the cluster center. The Jacobi radius is calculated by the program
nbody6tid and the half-mass radius is calculated by summing up the masses of the
stars beginning from the cluster centre up to half the mass within the Jacobi radius
is met. The distance of the last added star from the cluster centre is then the half
mass radius. To guarantee that the different models are self-consistent, and that they
represent the Hyades, the models were adjusted such that in the end of the simulation
(after 625Myr of evolution) all have nearly the same mass within the Jacobi radius,
namely the same mass as the Hyades. Figure 7.8 shows the resulting cumulative mass
profiles of one run for the different models. The values for the initial ratio of R50%/RJac

and final ratio of R50%/RJac for different initial ratios of ξ = RJac/R99% can be found in
Table 7.3. Figure 7.9 shows a plot of the final ratio of R50%/RJac as a function of initial
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ratios of ξ = RJac/R99%. The red points show the final value of R50%/RJac at the end of the
simulation. The blue points show the initial ratio of R50%/RJac for the different initial
ratios of ξ. For small values of ξ, and hence for a less dense star cluster, there is nearly
no change in the ratio of R50%/RJac for the initial and the final values. But for large values
of ξ, the ratio of R50%/RJac changes from about 0.1 at the beginning of the simulation to
0.33 at the end of the simulation. Thus, regardless of the initial density of a star cluster,
it converges on a final ratio of half mass radius to Jacobi radius of R50%/RJac ∼ 0.33.

In Figure 7.9 the light blue line shows a least square fit of the function f(x) =

a exp(−bx) + cx + d to the simulated data. The parameters of the fit are shown in
the top right corner of the plot. The black dotted line shows the observed ratio of
R50%/RJac. The crossing point of the black and the light blue line is at about ξ = 0.3.
This suggests that the Hyades started their evolution with an initial value of ξ = 0.3,
which corresponds well to the value of ξ for the Pleiades derived by Schlüter [2012].
In fact this value of an overfilling initial star cluster can be estimated from the star
formation efficiency and the formula for the tidal radius under the assumption that the
composition of cluster and gas formed a nearly Roche lobe filling formation. Given
that the star-formation efficiency is:

SFE =
Mcl(t)

Mgas,i +Mgas,acc(t)
≈ Mcl

Mgas,i

(7.4)

whereMcl(t) is the cluster mass as a function of time,Mgas,i =Mgas+cl the initial gas
mass andMgas,acc(t) the accreted gas mass (Dib et al. [2013]). For simplicity this was
taken to be zero and the cluster mass was taken to be independent of time (e.g. the
cluster mass shortly before gas expulsion). With the assumption that the initial 99%
mass radius of the cluster is more or less the same as the Jacobi radius of the cluster
gas formation, it follows:

RJac,cl

R99%
≈ RJac,cl

RJac,gas+cl

=

(
Mcl

Mgas,i

)1/3

= (SFE)
1/3 (7.5)

With values of 1% to 60% for the star formation efficiency SFE (Dib et al. [2013]) the
ratio of initial Jacobi radius to 99% mass radius can be estimated between 0.2 and 0.8.
This should be the value to start the simulations since gas expulsion is not considered
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Table 7.4.: Values for d̂ for the Kolmogorov-Smirnov-test for models with different values of ξ.
The three values for the three different runs of the individual values of ξ give an
overview over the dispersion due to the random initialization of the single models.

ξ d̂

2/5 1.50 1.32 1.09
1/2 2.92 2.76 1.62
2/3 3.10 2.46 2.26
1 2.94 2.93 2.69
2 3.20 3.28 2.21
3 2.91 2.98 2.73

in the simulation, due to its instantaneous occurrence (Baumgardt & Kroupa [2007]).
The gas expulsion time scale (∼ 105 Myr) is much shorter than the initial crossing
time (∼ 106 Myr) of the cluster. Thus the theory of star cluster formation provides
an explanation to the overfilled initial cluster, or to put the other way around, the
initial conditions of cluster formation determine the star-formation efficiency of the
primordial molecular cloud.

7.4.2. Agreement of observation and simulation for different ratios of

Jacobi radius to 99% mass radius

To quantify the agreement of the cumulative mass profile of the models for different
values of ξ with the observed cumulative mass profile, a Kolmogorov-Smirnov-test was
apllied. A comparison of the values for d̂ is shown in Table 7.4. The model with the
best agreement to the observational data is the one with a value of ξ = 2/5 and a value
of d̂ = 1.09 to 1.50. This corresponds to a significance level of 5%. All other values for
d̂ are higher than 2.21 (besides one for ξ = 1/2) and therefore their cumulative mass
profile is with a chance of 99.99% due to a distribution function different from that of
the observation. This supports the assumption made from Figure 7.9 that the Hyades
formed with an initial value of ξ = 2/5 or smaller.
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Fig. 7.10.:Mass segregation for a simulation with initial ratio RJac/R99% = 1. Shown are from
left to right the cumulative values for ΓMST for the 5 (red), 10 (light green), 20 (blue),
50 (purple), 100 (light blue) and 200 (dark green) most massive stars as well as all
stars (black). A value of ΓMST = 1 marks an unsegregated star cluster.

7.4.3. Mass segregation: Minimum spanning tree

Figure 7.10 shows the values of ΓMST for a model of the Hyades with initial ratio of
RJac/R99% = 1 for the 5, 10, 20, 50, 100, 200 and all most massive stars within a radius of
30 pc around the cluster centre. Note that the higher the sample size of massive stars,
the lower the value of ΓMST (see subsection 6.2.4). This analysis show that the stars up
to the 50 most massive stars are highly segregated compared to an equal-sized random
sample of stars. Together with the analysis of the average cumulative mass (Figure 7.7)
this is a clear indication that the most massive stars are located in the centre of the star
cluster.
The five different models for ξ were similarly tested for their degree of mass seg-

regation in terms of the effect of the initial ratio RJac/R99% on the mass segregation.
The result of this analysis is shown in Figure 7.11 where the value of ΓMST for the 10
(light green), 20 (blue), 100 (light blue) and all (black) most massive stars was plotted
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Fig. 7.11.: Comparison of mass segregation for simulations with initial ratios of RJac/R99% = 0.4,
0.5, 1, 2 and 3 (from left to right). Shown are values for ΓMST for the 10 (green), 20
(blue), 100 (light blue) and all (black) most massive stars. To show the trend in the
mass segregation with increasing value of RJac/R99% a linear least square fit to the
data is plotted as dashed lines.

as a function of initial ratio RJac/R99% of the models. As expected, for all models the
value of ΓMST for all most massive stars is equal to 1, and the lower the sample size
the higher the value of ΓMST becomes. In order to shw the trend in the dependency of
the degree of mass segregation on the initial ratio of RJac/R99% a linear least square fit
(dotted lines) was fitted to the data: The more compact the star cluster at the beginning
of its evolution the higher the value of ΓMST at the end. Thus more compact star
clusters preserve their compactness for the most massive stars even if the whole cluster
expands considerably (compare Figure 7.9). This is due to the shorter relaxation time
of the massive stars.
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7.5. Velocity dispersion, kinematic distance and cluster shape

The third part of this work deals with the velocity dispersion within the star cluster,
and the effect of the distance measurements with the convergent point method. For
the calculations the ensemble 2750W6 with a value ξ = 2/5 was used.

7.5.1. Velocity dispersion

To investigate the velocity dispersion of the Hyades for the ensemble 2750W6 the
velocity dispersion according to Equation 3.27 was calculated. For four different radii
(r<3 pc, 9 pc, 18 pc and 30 pc) from the cluster centre, the eigenvalues and eigenvectors
of the velocity dispersion tensor were determined. In addition, the kinetic energy
and the gravitational potential energy of the stars within this radii (neglecting the
gravitational force of the outer stars) was calculated. The resulting mean values
and their standard errors for the ensemble 2750W6 and the perpendicular velocity
dispersion for the observations are shown in Table 7.5. Since the observational data
is obtained from the convergent point method, the radial velocity is predicted such
that there is, technically speaking, no complete three dimensional velocity information.
A calculation of the three dimensional velocity dispersion from a subsample with
measured radial velocities was not practicable due to large measurement errors. The
same problem arises when Perryman et al. [1998] tried to determine the velocity
dispersion for Hyades stars from Hipparcos data (see within Röser et al. [2011, sec.
7]). Therefore, for the observation, only the perpendicular velocity dispersion was
calculated and compared to the perpendicular velocity dispersion calculated from the
simulated data. For the observations the perpendicular velocity dispersion corrected
for the measurement errors within the 9 pc from the cluster centre is ∼0.6 km·s−1. The
uncorrected value is calculated to ∼0.9 km·s−1. Hence there is a large uncertainty in
determination of the velocity dispersion in the observations.
For the simulation the three dimensional velocity dispersion comes out to be ∼

0.5 km·s−1 at which the dispersion in the centre is slightly higher than in the whole
volume of radius 9 pc. The comparison of the value for σperp with the three dimensional
velocity dispersion shows that the perpendicular velocity dispersion with a value of
∼0.3 km·s−1 within 9 pc is comparable to the one dimensional velocity dispersion,
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Table 7.5.: Velocity dispersion, kinetic energy and potential energy of the Hyades for stars
within r<3 pc, 9 pc, 18 pc and 30 pc from the cluster centre. For the observation the
value corrected for measurment erros and the uncorrected value are shown.

Quantity Value
Simulation Observation

r < 3 pc corrected uncorr.

Ekin [Msunkm/s] 16.233± 1.812
Epot [Msunkm/s] 32.387± 3.295
Epot/Ekin 1.995± 0.305
σ [km·s−1] (from pot. energy) 0.520± 0.028
σ [km·s−1] 0.515± 0.010
σx [km·s−1] 0.263± 0.008
σy [km·s−1] 0.293± 0.009
σz [km·s−1] 0.328± 0.006
σperp [km·s−1] 0.321± 0.007 0.734± 0.069 0.938
σperp/σ 0.623± 0.007

r < 9 pc

Ekin [Msunkm/s] 38.504± 3.574
Epot [Msunkm/s] 60.864± 4.645
Epot/Ekin 1.581± 0.191
σ [km·s−1] (from pot. energy) 0.44± 0.07
σ [km·s−1] 0.478± 0.007
σx [km·s−1] 0.232± 0.007
σy [km·s−1] 0.262± 0.006
σz [km·s−1] 0.326± 0.003
σperp [km·s−1] 0.307± 0.005 0.618± 0.037 0.958
σperp/σ 0.642± 0.014

r < 18 pc

Ekin [Msunkm/s] 48.003± 3.907
Epot [Msunkm/s] 65.143± 4.665
Epot/Ekin 1.357± 0.146
σ [km·s−1] (from pot. energy) 0.41± 0.12
σ [km·s−1] 0.493± 0.005
σx [km·s−1] 0.266± 0.003
σy [km·s−1] 0.255± 0.006
σz [km·s−1] 0.326± 0.004
σperp [km·s−1] 0.313± 0.004 0.779± 0.037 1.129
σperp/σ 0.661± 0.011

r < 30 pc

Ekin [Msunkm/s] 61.598± 3.918
Epot [Msunkm/s] 66.834± 4.631
Epot/Ekin 1.085± 0.101
σ [km·s−1] (from pot. energy) 0.40± 0.12
σ [km·s−1] 0.546± 0.005
σx [km·s−1] 0.339± 0.005
σy [km·s−1] 0.258± 0.005
σz [km·s−1] 0.341± 0.005
σperp [km·s−1] 0.326± 0.004 0.969± 0.036 1.309
σperp/σ 0.597± 0.009
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7. Simulation results

Table 7.6.: Present-day axis ratios and orientation of the velocity ellipsoid and axis ratio
and orientation of the velocity ellipsoid after 12Myr of evolution calculated from
the simulations for four radii regions of the Hyades. A represents the highest
semi-major axis, C the lowest. The angle Ψ is measured between the projection of
the eigenvector to the highest eigenvalue onto the xz-plane and the x-axis, Φ is the
angle between the projection of the same eigenvector onto the xy-plane and the
x-axis and Θ is measured between the y-axis and the projection of the eigenvector
to the eigenvalue B onto the zy-plane (compare Figure 3.2).

B
A

C
A

Ψ [°] Φ [°] Θ [°]

r< 3 pc
Model present-day 0.83 0.50 3.59 2.56 8.12
Model start 0.81 0.76 9.54 12.67 37.12

r< 9 pc
Model present-day 0.73 0.41 3.21 23.31 4.04
Model start 0.94 0.75 6.12 3.56 1.04

r< 18 pc
Model present-day 0.61 0.43 7.05 57.23 2.34
Model start 0.95 0.65 3.87 3.46 0.76

r< 30 pc
Model present-day 0.49 0.42 13.07 78.56 79.02
Model start 0.95 0.55 3.77 4.28 0.51

although it is slightly too high such that the ratio of σperp to σ is slightly higher than
the expected value of 1√

3
≈ 0.58. Furthermore the velocity dispersion in z-direction is

for all radii larger than the velocity dispersion in x- or y-direction.

Comparing the velocity dispersion perpendicular to the direction towards the conver-
gent point between simulation and observation reveals a difference of about a factor of
two between those two values in all considered radii regions. This is consistent with the
results Röser et al. [2011] get for their sample of stars. They derived the velocity disper-
sion in three dimensions from the perpendicular velocity for their sample of the Hyades,
obtaining values ranging between(0.88± 0.11) km·s−1 and (0.74± 0.21) km·s−1 for
different mass bins and different radii of r < 9 pc and r < 3 pc (see Röser et al. [2011,
Table 3]). The velocity dispersion for four different mass intervals for the simulation
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7.5. Velocity dispersion, kinematic distance and cluster shape

can be found in Table A.3 in the Appendix. The values Röser et al. [2011] calculated
for σperp is about a factor of two greater than the one they obtained from the virial
theorem. There are two explanations for this. Firstly, the measurement of the proper
motions from which the perpendicular velocity is derived is somewhat inaccurate.
Hence the velocity dispersion turns out to be too high, or the measurement errors are
underestimated such that the correction for them is too low, which also leads to an
observed velocity dispersion higher than the real one. Since the correction for the
measurement errors is very large it is possible that the proper motion measurements
are one reason for the difference. As a second reason it might be, that there are stars
within the observed sample which have an unresolved faint companion. This raises
the velocity dispersion in the cluster due to the orbital motion of the two stars. For
detailed discussion of the velocity dispersion within the observations see Röser et al.
[2011, sec. 7].
The inner part of the star cluster, namely the region within 3 pc, is consistent with

the virial theorem. Whereas within 9 pc the ratio of potential energy and kinetic
energy differs much from the value of two. This is due to the fact that the Hyades are
not an isolated system for which the virial theorem holds but a system perturbed in
the outer parts by the tidal field of the Galaxy. Furthermore, the velocity dispersion
calculated from the potential energy for this two regions matches the one calculated
from the velocity dispersion tensor. In the regions within 18 pc and 30 pc the calculated
velocity dispersion from the virial theorem deviates from that calculated from the
velocity dispersion tensor even if for the 18 pc region it still matches the value from
the dispersion tensor within its uncertainty ranges. Nevertheless for this radii regions
the virial theorem was not expected to hold, so that this calculation can be treated as
an estimate for the deviation from equilibrium.
The squared axis ratios of the velocity ellipsoid for the best fitting model of ensemble

2750W6 and its orientation in the Galactic coordinate system, according to the pre-
scription in subsection 3.3.2, was calculated for both the present-day and the start of
the simulation (about 12Myr). The largest semi-major axis is named A, the second
highestB and the lowestC . The results for the four radii regions used above are shown
in Table 7.6. The present-day velocity ellipsoid is strongly flattened with the largest
semi-major axis (but the lowest velocity dispersion) in nearly x direction. In the inner
part (3 pc and 9 pc) the velocity ellipsoid is nearly aligned with the coordinate system
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Fig. 7.12.: Distance change due to distance determination with the convergent point method
for Hyades stars within 15 pc from the cluster centre. The distance dispersion is
(0.55± 0.03) pc. For each star the velocity difference between the velocity parallel
to the direction towards the convergent point, determined from the actual velocity
given by the simulation, and the one determined by the convergent point method is
color coded.

with the smallest velocity dispersion in x-direction and the highest in z-direction. With
increasing radius the inclination of the angle Φ increases due to the tidal tails, such
that for the whole 30 pc region the orientation in the xy-plane is rotated by nearly 80°.
Hence the leading and trailing tidal tail (compare top left picture in Figure 7.15) run
nearly parallel to the y-axis.

7.5.2. Kinematic distance

The simulation provides full position and velocity information for all stars. Therefore a
comparison between the distance determined by the convergent point method and the
real distance of a star is possible. In order to achieve proper motion information for
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7.5. Velocity dispersion, kinematic distance and cluster shape

every star from the simulation the proper motion with respect to its position on the
sky is calculated from the given space velocity according to Equation 4.4. From the
cluster centre of mass velocity the direction towards the convergent point for each star
position is calculated. Then the rotation from Equation 4.7 is applied to get the proper
motion components in direction to the convergent point and perpendicular to it. In
the next step the distance to every star is calculated with Equation 4.10 and compared
to the original value. The distance change for the stars within 15 pc from the cluster
centre as a function of the distance from the sun is shown in Figure 7.12. If all stars
were selected the contamination of the distance change from the outer stars, mainly
in the beginning of the tidal tails, leads to a systematic asymmetry (see Figure A.3b
in the Appendix). Therefore, only the region up to 15 pc was chosen for comparison.
The distance change is symmetric with a maximum distance change of about 2 pc for
the stars with a distance of about 47 pc to 50 pc from the sun. Anyway these are not
necessarily stars in the centre of the star cluster, but those whose distance from the
Sun is of these values (see color coding in Figure A.3b). Therefore this can also be stars
from the outer parts of the star cluster, which explains that the distance change at the
“centre distance” of 47 pc to 50 pc is the highest although the velocity dispersion in
the centre is the lowest. The color coding shows the velocity difference between the
assumed cluster velocity in the direction towards the convergent point at the position
of the star and its actual velocity in this direction. This indicates clearly, that, due to
their internal velocity dispersion, for those stars which have a velocity component
in direction towards the convergent point larger than the assumed cluster centre of
mass velocity for this point on the sky, a distance lower than the original distance
is calculated. For those stars which have a velocity component in direction towards
the convergent point smaller than assumed, a larger distance is calculated. This is
the result one would expect since a lower velocity leads to a lower calculated proper
motion and this means a star is farther away from the Sun.

The dispersion of the distance change is ∆dist = (0.55± 0.03) pc. To check whether
the distance change could be due to internal velocity dispersion one can look at the
ratios

∆d
d

and ∆v
v

(7.6)

of the distance change ∆d to the distance d of the stars from the sun and the velocity
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Fig. 7.13.: Relative radius change for Hyades stars within 30 pc from the cluster centre. The
inset shows the absolute radius change for the stars within 30 pc from the cluster
centre.

change ∆v to the actual velocity v. These ratios are connected via the Equation 4.9 in
the following way:

∆v
v

=
∆µ
µ

=
∆$
$

=
∆d

d+∆d
(7.7)

where µ and ∆µ are the proper motion and the proper motion change respectively. $
and ∆$ refer to the secular parallax and its change. For small distance changes ∆d
compared to the distance d this can be approximated by:

∆v
v

≈ ∆d
d

(7.8)

With∆v = σ ≈ 0.5 km·s−1 the velocity dispersion and v ≈ 50 km·s−1 the cluster space
velocity (this must be used because it is the velocity from which the proper motion
is calculated) one obtains a value of ∆v/v = 0.01. With the dispersion in the distance
determination of ∆dist = 0.56 pc and a distance of d ≈ 50 pc of the Hyades from the
sun one calculates the ratio ∆d/d ≈ 0.01. This gives a very good agreement for the
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Fig. 7.14.: Present-day cumulative mass profile of the Hyades within 30 pc from the cluster
centre. The black line shows the observational data, the red line shows the pure
simulated data and the blue line shows the cumulative mass profile calculated under
the usage of the convergent point method for the distance determination of the stars.

Equation 7.8 and supports the assumption that the distance change is related to the
internal velocity dispersion of the stars. Nevertheless this leads to a systematic error
in the distance determination up to ∼5%.

The relative radius change of all stars compared to the cluster centre and the absolute
radius change is shown in Figure 7.13. However, since the mean distance change is
nearly zero, the impact on the cumulative mass profile is rather small. A comparison
of the cumulative mass profile of the original distance and the one calculated from the
convergent point method is shown in Figure 7.14. The two cumulative mass profiles
are similar.

Table 7.7 shows the values of the perpendicular velocity calculated with the actual
distance and the distance calculated with the convergent point method. A recalculation
of the perpendicular velocity dispersion for the best fitting model of ensemble 2750W6
after determining the distances of the stars with the convergent point method shows
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Table 7.7.: Perpendicular velocity dispersion calculated before and after determining the dis-
tances of the stars with the convergent point method for stars within r<3 pc, 9 pc,
18 pc and 30 pc from the cluster centre for the present-day state. The calculation
was apllied to the best fitting model of ensemble 2750W6.

Quantity Value
r< 3 pc r< 9 pc r< 18 pc r< 30 pc

σperp 0.332 0.299 0.312 0.330
σperp,neu 0.332 0.298 0.311 0.329

no significant difference in the velocity dispersion. Hence the difference of a factor
of two between observed velocity dispersion and calculated velocity dispersion in the
simulation is not due to the calculation of the observed velocity from the proper motion
with the kinematic parallax.

7.5.3. Cluster shape

In a final step, a detailed analysis of the Hyades shape was done. For the best fitting
model of ensemble 2750W6 and the observations the second order momenta tensor
of the Hyades space coordinates according to Equation 3.25 was calculated and trans-
formed into diagonal form. Then the axis ratios of the semi-major axis were calculated
and the orientation of the principal axis relative to the coordinate axis of the Galactic
coordinate system was determined. The results are shown in Table 7.8 where the axis
ratios are, once again, the ratios of the squared semi-major axis lengths. These values
are qualitative, because without using the other models the random noise of the ensem-
ble was neglected, and for the observations the measurement errors for the position
of the stars were also neglected. However, the main feature revealed by this analysis
is an elongated shape with the highest extension in x-direction and the smallest in
z-direction. This is the shape one would expect from the effective potential given in
Equation 3.23 and which can be seen in Figure 7.15. Nevertheless the axis ratios of
y/x = 2/3 and z/x = 1/2 calculated from the effective potential are only reached for
the whole 30 pc region and not, as expected, for the Jacobi radius of about 9 pc. For
the star cluster up to the Jacobi radius, the axis ratios

√
B/A = 0.94 and

√
C/A = 0.89

are calculated. This means the extension is nearly the same for the highest and the
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Table 7.8.: Axis ratios and orientation of semi-major axis of the second order momenta tensor
of the Hyades space coordinates for stars within r<3 pc, 9 pc, 18 pc and 30 pc from
the cluster centre for the present-day state and the start of the best fitting model of
the simulations as well as for the observations. The symbols are the same as for
the velocity ellipsoid. For the observation the numbers in parentheses refer to the
clean sample with vperp < 2 km·s−1.

Quantity Value
B
A

C
A

Ψ [°] Φ [°] Θ [°]

r< 3 pc

Model present-day 0.85 0.80 16.208 41.38 9.84
Model start 0.95 0.93 30.01 52.81 44.74
Observations 0.86 (0.85) 0.72 (0.72) 28.82 (27.83) 38.51 (37.57) 4.49 (3.66)

r< 9 pc

Model present-day 0.89 0.79 1.78 5.30 13.83
Model start 0.91 0.89 5.07 26.91 13.61
Observations 0.83 (0.84) 0.76 (0.76) 3.76 (3.68) 3.48 (4.79) 21.10 (21.26)

r< 18 pc

Model present-day 0.59 0.49 1.36 22.85 9.09
Model start 0.97 0.90 0.15 18.94 7.82
Observations 0.77 (0.799) 0.63 (0.64) 4.55 (1.26) 24.44 (24.70) 23.28 (26.45)

r< 30 pc

Model present-day 0.46 0.37 2.82 39.00 0.06
Model start 0.98 0.91 5.55 31.70 5.51
Observations 0.71 (0.92) 0.59 (0.66) 1.87 (3.95) 33.24 (12.22) 19.93 (5.47)

second highest semi-major axis and slightly flattened in the third direction. Thus the
Hyades have a oblat shape and not as expected a nearly prolat shape. This may be due
to evolutionary effects and perturbations during 625Myr of evolution, whereas the
axis ratios calculated from the effective potential are just an unevolved case under the
influence of a tidal field. Moreover, for the calculation of the second order momenta all
stars in a spherical volume with certain radius around the cluster centre were used and
not, as Figure 3.1 implies, an ellipsoidal volume. Apart from the outer regions of the
star cluster, where the tidal tails dominate the simulations and the contamination with
field stars is high for the observation, the values of the axis ratios of observation and
simulation agree. The top left panel in Figure 7.15 shows well the leading (in positive
x- and y-direction) and trailing tail (in negative x- and y-direction) of the star cluster.
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The orientation of the star cluster is most reliably for the stars within the Jacobi
radius of 9 pc because for this region most stars can be assumed as gravitationally
bound and, furthermore, the tidal tails are not dominating. Beyond the 9 pc region
the tidal tails dominate the orientation of the star cluster (whose orientation is also
interesting to calculate) and in the inner part the star cluster should nearly be spherical
such that the determination of the orientation angles is not that reliable. The cluster
ellipsoid up to 9 pc has its major principal axis almost pointing to the x-direction. The
angle between the projection of this principal axis onto the xz-plane and the x-axis is
aboutΨ = 1.8°. For the angle between the projection of the major principal axis on the
xy-plane and the x axis a value of about Φ = 5° is calculated. In contrast, the beginning
of the tidal tails at 30 pc lies nearly in the xy-plane with an angle Φ = 39° between the
x-axis and the direction of the major principal axis in the xy-plane (for the velocity
ellipsoid a value of Φ ≈ 80° was calculated). Overall the observational data shows the
same trend as the simulation data, although some values differ considerably, e.g. the
Θ-value. But this can only be a qualitative analysis since uncertainty ranges for both,
simulations and observations are not given. For detailed observational analysis see
also Röser et al. [2011, sec. 5.1]. The values calculated there are in good agreement
with the ones calculated here.
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Fig. 7.15.: Present-day spatial distribution of the Hyades stars. The coordinate axis are aligned
with the galactic coordinate system while the origin is put into the cluster barycentre.
The top left picture shows the Hyades in the xy-plane, the top right picture shows
the Hyades in the xz-plane and the bottom right picture shows the Hyades in the
yz-plane. The color coding shows the masses of the stars, the dark blue circle shows
a radius of 30 pc from the cluster centre, the green circle shows the 9 pc radius and
the light blue one the 3 pc radius from the cluster centre.
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8. Conclusion

In the framework of this thesis the ensemble 2750W6, an improved model of the
Hyades adapted from new PanSTARRS1 observations by Goldman et al. [in press], was
investigated to study the dynamics of the star cluster and the effects of the distance
determination with the convergent point method. In a first step the scattering of the
ensemble due to the random initialization of the model IMF in the N -body code was
studied. From this, a high dispersion in the cumulativemass profile was found, while the
effect on the present-day mass function was rather small. A quantitative measure of the
agreement of the cumulative mass profiles was given by a Kolmogorov-Smirnov-test.
In the second part, the effect of the initial ratio of RJac to R99% on the evolution
of the Hyades was investigated and an initial Roche Lobe overfilling of the Hyades
discovered. Detailed analysis was undertaken for the cumulative mass profile and the
mass segregation. For this purpose the ratio of half-mass radius to Jacobi radius as a
measure of compactness of the Hyades cluster was calculated for models with different
initial ratios of RJac to R99%. The results were derived as a function of initial ratio
of RJac to R99% and compared to the present-day value of the Hyades. This showed
that the Hyades with a present-day value of R50%/RJac = 0.57 should initially started
evolution with a value of 0.3 for the initial ratio of RJac to R99%. This highly overfilled
initial state is compatible with the theory of nearly instantaneous expulsion of the
primordial gas of the molecular cloud at the time when the stars start hydrogen burning.
The dynamical time is far longer than the time scale needed for the gas expulsion,
therefore the stars could not follow the change in potential and the star cluster starts
evolving as an overfilled cluster. Furthermore it was shown that this value can be
derived from the star forming efficiency of the molecular cloud and its tidal radius.
Another interesting feature revealed by this analysis is that the final ratio of half-mass
radius to Jacobi radius is nearly independent of the initial ratio of RJac to R99% if this
value is higher than 1. The analysis of the initial ratio of RJac to R99% on the mass
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segregation using the minimum spanning tree method showed a dependency of the
degree of mass segregation on the initial ratio of RJac/R99%. The more compact the star
cluster is, when it starts its evolution, the higher the degree of mass segregation at the
present time, given that the different star cluster models end up with nearly the same
value for the Jacobi radius.
The investigation of the effect of the convergent point method on the distance

determination yield that the determined distance implies a systematic error of up to
maximal 4% due to the internal velocity dispersion in the cluster. This is an intrinsic
property of the convergent point method and can be explained by the assumption
that all stars share the same space velocity. But since the stars in the cluster are in
orbital motion around the cluster centre this is not valid. Nevertheless, the effect on
star cluster properties like the cumulative mass profile are negligible since the mean
distance error is zero. Furthermore the prediction of the convergent point method, that
the perpendicular velocity can hold as an estimate of the velocity dispersion within
the cluster, was examined. This study revealed a difference of a factor of two between
the simulated perpendicular velocity dispersion and the observed one. There are two
different explanations for this phenomenon, first the measurement errors of the proper
motions are underestimated an hence the correction for them is too small or the larger
velocity dispersion in the observations is caused by unresolved binary systems. Since
all simulations in this work are single star simulations, the second explanation can be
tested by running further simulations with binary systems.
The dynamics of the Hyades in the model were further tested by calculating the ratio

of potential and kinetic energy, and comparing it to that for virial equilibrium. For
the inner regions, up to the Jacobi radius, the Hyades are nearly in virial equilibrium.
For the outer regions, the virial equilibrium is disturbed by the tidal forces of the
Galaxy pulling the stars into the tidal tails. Further efforts were made by calculating
the orientation of the velocity ellipsoid and the cluster shape of the Hyades in the
simulation. The velocity ellipsoid comes out to show the highest velocity dispersion in
nearly z-direction, perpendicular to the Galactic plane, while the values for the other
two semi-major axis are almost the same. Throughout the whole cluster an inclination
for the velocity ellipsoid in the xy-plane due to the tidal forces of the Galaxy can be
measured. The cluster shape is a flattened ellipsoid, almost aligned with the Galactic
coordinate system with the largest extension in x-direction towards the Galactic centre
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and the lowest in z-direction.
The mass loss, the luminosity function and the stellar evolution were not analyzed.

These quantities would serve as further possibilities of comparison between simulation
and observation. In this thesis some quantities were just calculated for one model or just
the simulations without calculating the corresponding quantities for the observations.
The former quantities can merely be used as qualitative analysis since theN -body noise
was neglected, the latter ones are analysis of the model and have to be compared to
the observations in further studies to quantify the quality of the models. Furthermore
the effect of binary systems in the star cluster were not investigated. Since the orbital
motion of binary stars is much larger then the orbital motions of the stars around the
cluster centre, the inclusion of binaries in the simulation could solve the problem of the
inconsistency between the velocity dispersion of the simulations and the observations.
For this purpose further simulations especially including binaries are required.
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A.1. Physical constants

Constants
Gravitational constant G = (6.673 84± 0.000 80) · 10−11 m3·kg−1·s−2

G = 4.5179 · 10−30 pc3·M−1
� ·s−2

G = 4.48 · 10−3 pc3·M−1
� ·Myr−2

G = (222.3)−1pc3·M−1
� ·Myr−2

Mass of the sun 1M� = 1.989 · 1033 g
Parsec 1 pc = 3.085 678 02 · 1018 cm
Megayear 1Myr = 3.155 814 998 4 · 1013 s
Solar radius R0 = (8.0± 0.5) kpc
Circular frequency at 8 kpc 9.488 · 10−16 s−1

Circular speed at at 8 kpc 234.215 36 km·s−1

κ (conversion of proper motion) 4.740 47

Conversion
1 pc·Myr−1 = 0.977 775 320 km·s−1

1 km·s−1 = 1.022 729 84 pc·Myr−1

A.2. Detailed discussion of the Kolmogorov-Smirnov-test

The Kolmogorov-Smirnov-test analyses whether two random variables are generated
by the same empirical distribution function. Therefore the two cumulative distribution
functions are calculated and themaximum vertical difference between the two functions
is calculated. Since this statistical test should be used to determine wether the simulated
cumulative mass function follows the same distribution than the observed one the two
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cumulative mass profiles are normalized. But this is in special cases misleading as will
be discussed below. Consider a reference cumulative profile (blue line in the left picture
in Figure A.1) and two cumulative profiles which should be compared to this reference
(red and green line in the left picture in Figure A.1). Since the Kolmogorov-Smirnov-test
is sensitiv for the maximum difference of the normalized cumulative profiles, Figure
A.1 shows clearly that for a somewhat better fitting cumulative mass profile (the
green one) the Kolmogorov-Smirnov-test calculates a higher value of d̂ and hence
a worse agreement of the two profiles than for the somewhat worse fitting profile
(red one). This may be in the sense, that the red curve and the blue curve have much
more the same shape (curvature and slope), the right answer but in the sense, that
one would get a measure for the differences of the curves (and to this also accounts
the absolute difference), this is misleading. Therefore another test has to be applied
or a selection by eye for the absolute difference of the curves has to go ahead the
Kolmogorov-Smirnov-test. Another statistical test for the quality of the agreement of
the two profiles could be the χ2-test.
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Fig. A.1.: Three arbitrary cumulative profiles from which two are compared to the third by the
Kolmogorov-Smirnov-test. The left picture shows the calculated cumulative profiles,
while the right picture shows the normalized cumulative profiles.
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A.3. Additional data

Table A.1.: Present-day comparison of the number of stars and the mass within different
radii from the cluster centre for observation and simulation. The values for the
simulation are ensemble averages with their corresponding 1σ standard errors.

Quantity Value
Observation Simulation

Lowest mass ml 0.09M� 0.083M�

Highest mass mh 2.6M� 2.7M�

Maximum radius rmax 30 pc 30 pc
Number of stars N(rmax) 773(668) 594.2± 57.9
Total massM(rmax) 477.8M�(424.71M�) (408.6± 36.5)M�

Jacobi radius rJ 8.4 pc(8.2 pc) (9.8± 0.3) pc
Number of stars N(rJ) 363(334) 432.5± 62.1
Total massM(rJ) 270.7M�(252.8M�) (321.2± 40.9)M�

Core radius rc 3 pc 3 pc
Number of stars N(rc) 100(91) 123± 31
Total massM(rc) 102.8M�(95.5M�) (119.6± 25.4)M�

Completeness limit 0.1M�

Table A.2.: Number of Neutron stars and White dwarfs for the ensemble 2750W6 for different
radii from the cluster centre.

Quantity 2750W6

Total

Carbon/Oxygen White dwarfs 29.7± 4.4
Oxygen/Neon White dwarfs 1.9± 1.0
Neutron stars 2± 1

r < 30 pc

Carbon/Oxygen White dwarfs 13.2± 2.6

r < 9 pc (final - inside Jacobi radius)

Carbon/Oxygen White dwarfs 10.9± 1.4

r < 3 pc (final - core)

Carbon/Oxygen White dwarfs 3.5± 1.3
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Table A.3.: Comparison of velocity dispersion for different mass intervals for the best fitting
model of ensemble 2750W6 for the present-day and the beginning of the simulations.
Only stars within a radius of 9 pc from the cluster centre were considered.

Quantity Value
Simulation present-day Simulation start

m< 0.4M�

σ [km·s−1] 0.51 0.73
σx [km·s−1] 0.22 0.39
σy [km·s−1] 0.26 0.43
σz [km·s−1] 0.38 0.44
σperp [km·s−1] 0.33 0.43

0.4M�<m<0.8M�

σ [km·s−1] 0.48 0.73
σx [km·s−1] 0.23 0.41
σy [km·s−1] 0.23 0.41
σz [km·s−1] 0.35 0.45
σperp [km·s−1] 0.30 0.44

m>0.8M�

σ [km·s−1] 0.43 0.72
σx [km·s−1] 0.21 0.40
σy [km·s−1] 0.25 0.38
σz [km·s−1] 0.27 0.46
σperp [km·s−1] 0.26 0.42

m>1M�

σ [km·s−1] 0.40 0.74
σx [km·s−1] 0.20 0.41
σy [km·s−1] 0.23 0.39
σz [km·s−1] 0.26 0.47
σperp [km·s−1] 0.23 0.44
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Table A.4.: Initial parameters for the best fitting model of ensemble 2750W6

Quantity Value
King ParameterW0 6
Particle number N0 2750
Mean stellar massm 0.619M�
Total massM0 calculated 1702.25M�
Total massM0 from IMF 1696.98M�
Jacobi radius rJ 15.85 pc
99% mass radius R99% 35.86 pc
ratio RJac/R99% 0.44
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A.4. Additional diagrams
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Fig. A.2.: Present day Aitoff projection of the Hyades in galactic longitude and latitude coor-
dinates. Top the observations by Goldman et al. [in press], Bottom the best fitting
model of ensemble 2750W6.
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(a) Present-day Aitoff projection of the Hyades with tidal tails in galactic longitude and latitude
coordinates.
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(b) Distance change by usage of the convergent point method for the best fitting model of
ensemble 2750W6. The color coding shows the distance of the stars from the cluster centre.
The fit function for the least square fit is given by g(x) = mx+bwith determined parameters
m = −0.020± 0.003 and b = (0.871± 0.168) pc
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