The importance of feedback in the formation of realistic dwarf galaxies

03.09.2018 Potsdam Thinkshop

Tobias Buck

buck@mpia.de

Andrea Macciò, Aura Obreja, Aaron Dutton, Jonas Frings, Hans-Walter Rix

Is LCDM wrong?

Simulations produce realistic discs

from T. Buck's PhD Thesis

But problems on dwarf galaxy scale

Bullock+2017

Tobias Buck

Potsdam Thinkshop

Small scale problems of LCDM

- 1. Missing satellites problem
- 2. Too-big-to-fail problem
- 3. cusp-core problem

1. The missing satellites problem

Bullock+2017

2. Too-big-to-fail problem

Satellites

Bullock+2017

3. Cusp-Core problem

Is LCDM wrong? NO!

Hydrodynamics and feedback matter!

Numerical Investigation of a Hundred Astronomical Objects

The NIHAO Simulation suite

125 zoom-in simulations from Milky-Way mass to dwarf galaxies scales

SPH - Gasoline2 (Wadsley+2017)

Simulation Physics

GASOLINE2.1 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

gas cooling

via hydrogen, helium and various metal lines

gas heating

via Photoionisation from the UV background

Shen+2010, Haardt&Madau 2012

3 star formation from cold dense gas n_{th}=10 parts/ccm (Aaron Dutton's talk on Friday) Stinson+2006

- SNII energy + metals (delayed cooling)
- SNIa metals

Stinson+2013

The Simulations

- 1. High-resolution zoom-in Milky Way sims
- 2. High-resolution zoom-in dwarf galaxy sims

1. High-res. MW simulations

halo masses: 5 x 10¹¹ to 2.8 x $10^{12} M_{\odot}$

- ~ 3 x 10⁷ particles
- ~ 8 x 10⁶ star particles
- ~ 10⁷ gas particles

- dark matter: 400 pc, 1.5 x $10^5 M_{\odot}$
- \cdot gas: 180 pc, 2.8 x 10⁴ M_{\odot}
- \cdot stars: 180 pc, 9300 M_{\odot}

q1.12e12

similar zoom-in projects: Aumer+2013, Latte-project (Wetzel+2016), Apostle (Sawala+2016), Auriga (Grand+2017)

Tobias Buck

Potsdam Thinkshop

04.01.18

2. High-res. dwarf galaxy sims

halo masses: 3 x 10⁸ to 1 x 10¹⁰ M_{\odot}

Gravitational softening and particle masses:

- dark matter: 30 pc, 2000 M_{\odot}
- gas: 14 pc, 400 M_☉
- \cdot stars: 14 pc, 130 M_{\odot}

Macciò, Frings, Buck et al. 2017 Frings, Macciò, Buck et al. 2017

23.10.18 15

1. The Missing satellites problem: Can we reproduce the number counts of Local Group dwarf galaxies?

Satellite stellar mass function

see also: Sawala+2015, Simpson+2017, Despali&Vegetti 2017 (baryonic modification of the mass function)

Baryonic effects leave haloes dark

see also: Simpson+ 2017, Sawala+2016, Wetzel+2016,

The inefficiency of galaxy formation due to the UV background

2. The TBTF problem: Can we reproduce the structure of Local Group dwarf galaxies?

Line-of-sight velocity dispersions of simulations and observations agree

also: Macciò, Frings, Buck et al. 2017, Frings, Macciò, Buck et al. 2017

2. Resolving TBTF for satellites: Tidal stripping!

Satellites and nearby dwarf galaxies are heavily tidally stripped

Potsdam Thinkshop

2. Resolving TBTF for field dwarfs: Core creation and halo expansion!

Core formation: strong dependence on star formation threshold! See Aaron Dutton's talk on Friday!

also: Mashchenko+2008; Pontzen & Governato 2012; Governato et al. 2012; Madau+2014; Di Cintio et al. 2014; Onorbe+2015; Read+2016; Frings, Macciò, Buck et al. 2017

Core creation lowers central densities of dwarf galaxies

also: Mashchenko+2008; Pontzen & Governato 2012; Governato et al. 2012; Madau+2014; Di Cintio et al. 2014; Onorbe+2015; Read+2016; Frings, Macciò, Buck et al. 2017

Potsdam Thinkshop

Small scale problems of LCDM

- 1. Missing satellites problem solved
- 2. Too-big-to-fail problem solved
- 3. cusp-core problem solved

Where does NIHAO fail?

Mass-metallicity relation of dwarf galaxies:

Reasons:

- metal enriched gas gets blown out of the dwarfs before recycling
- too strong stellar feedback?
- too simplified stellar feedback?
 - enrichment solely from SNII and SNIa

Reproducing realistic dwarf galaxy populations

- In NIHAO the stellar mass function and structure of simulated dwarf galaxies agrees well with observations
- Solutions to small scale problems of LCDM: sophisticated feedback models
- Model shortcomings revealed by the chemical enrichment, improvements are work in progress

State of the art simulations resolve the small scale issues of LCDM. Let's get the details of stellar feedback right!

Extra Material

Stellar mass-metallicity relation

Stellar mass-gas metallicity relation

