High-resolution cosmological simulations: The impact of the host galaxy on Galactic dwarf galaxies

14.06.2018 CLUES meeting Tenerife

Tobias Buck

buck@mpia.de

Andrea Macciò,

Aura Obreja, Aaron Dutton, Jonas Frings, **Hans-Walter Rix**

High-resolution cosmological simulations: The impact of the host galaxy on Galactic dwarf galaxies

14.06.2018 CLUES meeting Tenerife

Tobias Buck

buck@mpia.de

Andrea Macciò,

Aura Obreja, Aaron Dutton, Jonas Frings, **Hans-Walter Rix**

How did the Milky Way form?

The early stellar disc

How did the Milky Way form?

The early stellar disc

How did the Milky Way form? NFAO 综 Galaxy Simulations

The early stellar disc

the peanut bulge

How did the Milky Way form?

spatial distribution (Buck+2015,2016)

• environmental effects (Buck+2018b subm., Frings+2017, Macciò+2017)

dwarf galaxy population

The early stellar disc

the stellar disc

structure in position and abundance space
thin and thick disc (Buck+ in prep.)

the peanut bulge

morphology, kinematics
formation
(Buck+2018a, Buck+2018c to be subm.)

How did the Milky Way form?

• spatial distribution (Buck+2015,2016)

• environmental effects (Buck+2018b subm., Frings+2017, Macciò+2017)

dwarf galaxy population

The early stellar disc

Numerical Investigation of a Hundred Astronomical Objects

The NIHAO Simulation suite

125 zoom-in simulations from Milky-Way mass to dwarf galaxies scales

SPH - Gasoline2 (Wadsley+2017)

The NIHAO Simulation suite

125 zoom-in simulations from Milky-Way mass to dwarf galaxies scales

SPH - Gasoline2 (Wadsley+2017)

Simulation Physics

GASOLINE2.1 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

gas cooling

via hydrogen, helium and various metal lines

gas heating

via Photoionisation from the UV background

Shen+2010, Haardt&Madau 2012

self consistent star formation from cold dense gas n_{th}=10 particles/ccm Stinson+2006

early stellar feedback and SN feedback (energy + metals)

Stinson+2013

3

Simulation Physics

GASOLINE2.1 smooth particle hydrodynamics

"modern" implementation of hydrodynamics, metal diffusion

Wadsley+2017, Keller+2014

gas cooling

via hydrogen, helium and various metal lines

gas heating

via Photoionisation from the UV background

Shen+2010, Haardt&Madau 2012

self consistent star formation from cold dense gas n_{th}=10 particles/ccm Stinson+2006

early stellar feedback and SN feedback (energy + metals)

Stinson+2013

3

High-resolution hydro simulations of MW mass galaxies

Why fully cosmological, highresolution, hydro simulations?

A: dwarf galaxy population

B: stellar disc structure

Stellar light

Stellar light

High-resolution Simulations

7 Zoom-in simulations: 4 done, 3 at z=1 and more to come

halo masses: 5 x 10¹¹ to 2.8 x 10¹² M_{\odot}

- ~ 3 x 10⁷ particles
- ~ 8 x 10⁶ star particles
- ~ 10⁷ gas particles

Gravitational softening and particle masses:

- dark matter: 400 pc, 1.5 x $10^5 M_{\odot}$
- \cdot gas: 180 pc, 2.8 x 10⁴ M_{\odot}
- \cdot stars: 180 pc, 9300 M_{\odot}

q7.66e1

q1.12e12

a7.08e

the stellar disc

 structure in position and abundance space
 thin and thick disc the peanut bulge

morphology, kinematicsformation

How did the Milky Way form?

 high-redshift clumpy galaxies

The early stellar disc

spatial distributionenvironmental effects

High-resolution hydro simulations of MW mass galaxies: Can we reproduce the Local Group dwarf galaxy population?

The missing satellites problem

Satellite stellar mass function

see also: Sawala+2015, Simpson+2017, Despali&Vegetti 2017 (baryonic modification of the mass function)

No missing satellites problem here!

see also: Sawala+2015, Simpson+2017, Despali&Vegetti 2017 (baryonic modification of the mass function)

Baryonic effects leave haloes dark

see also: Simpson+ 2017, Sawala+2016, Wetzel+2016,

Line-of-sight velocity dispersions of simulations and observations agree

also: Macciò+(incl. TB) 2017, Frings+(incl. TB) 2017

Line-of-sight velocity dispersions of simulations and observations agree

also: Macciò+(incl. TB) 2017, Frings+(incl. TB) 2017

Can we reproduce the Local Group dwarf galaxy population? YES!

What can we learn from these simulations about Local Group dwarf galaxies?

Can we identify backsplash galaxies

Tobias Bu

Animation by T. Buck (MPIA, NYUAD) based on NIHAO simulations

Can we identify backsplash galaxies

Tobias Bu

Animation by T. Buck (MPIA, NYUAD) based on NIHAO simulations
Backsplash galaxies lost mass during the close encounter with MW $M_{M_{peak}}$

Tobias Buck

22

Reproducing the Local Group dwarf galaxy population

- number, mass and structure of simulated dwarf galaxies agree well with observed relations
- backsplash galaxies are common and they can be strongly affected by the host
- Identification of backsplash galaxies possible e.g. via distance and radial velocity

23

the stellar disc

 structure in position and abundance space
 thin and thick disc

the peanut bulge

morphology, kinematicsformation

How did the Milky Way form?

 high-redshift clumpy galaxies

The early stellar disc

spatial distributionenvironmental effects

dwarf galaxy population

Reproducing the central region of the Milky Way: the peanut-shaped bulge

25

26

The formation scenario of the peanut bulge!

28

Kinematic Decomposition

decomposition: Obreja+(incl. Buck) 2018

Kinematic Decomposition

Kinematic Decomposition

Tobias Buck

Different properties for peanut and spherical component |b| = 5MW b = -5MW b = -10▲ |b| = 10 spherical bulge - all peanut bulge - all 74113, 18251 117556, 26628 $\langle v_r \rangle \, [km/s]$ 100 0 -100 100 σ_{vr} [km/s] 75 50 25 -20 20 -20 20 0 0 | [°] 30

Different properties for peanut and spherical component |b| = 5MW b = -5----- MW b = -10|b| = 10spherical bulge - all peanut bulge - all bulge comps - all 117556, 26628 74113, 18251 191751, 44936 100 $\langle v_r \rangle \, [km/s]$ 0 -100 100 σ_{vr} [km/s] 75 50 25 Buck+2018c to be subm. -20 20 -20 20 -20 20 0 0 $\mathbf{0}$ | [°] **| [°**] **Tobias Buck** 30 CLUES 2018 - Tenerife 27.07.18

Birth properties of peanut and spherical bulge stars are different

Buck+2018c to be subm.

Reproducing the peanut shaped bulge of the MW

- first cosmo sim to reproduce key features of the peanut shaped bulge of the MW
- morphology and kinematics are well in agreement with observations of the MW
- Prediction: two kinematically different bulge components present in the MW
- peanut bulge stars have on av. higher birth angular momentum and larger birth radii

the peanut bulge

The early stellar disc

dwarf galaxy population

the peanut bulge

How did the Milky Way form?

• correct number, mass and structure of dwarf galaxies (Buck+2018b subm.)

dwarf galaxy population

The early stellar disc

the stellar disc

The early stellar disc

the peanut bulge

 first cosmo sim reproducing MW bulge (Buck+2018a, Buck+2018c to be subm.)
 2 kinematically distinct bulge comps.

How did the Milky Way form?

• correct number, mass and structure of dwarf galaxies (Buck+2018b subm.)

dwarf galaxy population

State of the art simulations: realistic! Use them with up-coming Galactic surveys!

Which information can we extract from the structure of the stellar disc?

Questions:

 What is the influence of (internal) secular evolution as opposed to (external) environmental effects?

see also: Aumer+2014 (simulations), Terrazas+2016 (semi-analytic models)

The structure of the whole MW stellar disc will be measured

Gaia → 5+1D phase space coordinates (25th of April 2018) APOGEE2 + 4MOST + Galah → chemical abundances

KEPLER + APOGEE (Cannon) ----- ages

Tobias Buck

The structure of the whole MW stellar disc will be measured

Gaia → 5+1D phase space coordinates (25th of April 2018) APOGEE2 + 4MOST + Galah → chemical abundances

KEPLER + APOGEE (Cannon) ----- ages

Tobias Buck

The structure of the whole MW stellar disc will be measured

Gaia → 5+1D phase space coordinates (25th of April 2018) APOGEE2 + 4MOST + Galah → chemical abundances

KEPLER + APOGEE (Cannon) ------ ages

image credit: Ivan Minchev Tobias Buck

The structure of the whole MW can be kinematically defined and studied

The structure of the whole MW can be kinematically defined and studied

the peanut bulge

The early stellar disc

dwarf galaxy population

the peanut bulge

How did the Milky Way form?

• correct number, mass and structure of dwarf galaxies (Buck+2018b subm.)

dwarf galaxy population

The early stellar disc

the stellar disc

The early stellar disc

the peanut bulge

first cosmo sim reproducing MW bulge (Buck+2018a, Buck+2018c to be subm.)
2 kinematically distinct bulge comps.

How did the Milky Way form?

• correct number, mass and structure of dwarf galaxies (Buck+2018b subm.)

dwarf galaxy population

the stellar disc

the peanut bulge

 realistic stellar discs
 great potential combined with upcoming surveys

The early stellar disc

first cosmo sim reproducing MW
bulge (Buck+2018a, Buck+2018c to be subm.)
2 kinematically distinct bulge

How did the Milky Way form?

comps.

• correct number, mass and structure of dwarf galaxies (Buck+2018b subm.)

dwarf galaxy population

State of the art simulations: realistic! Use them with up-coming Galactic surveys!

Extra Material

Mass-metallicity relation of dwarf galaxies:

The peanut/X-shaped morphology shows strong age dependence

Tobias Buck

KoCo - MPIA

Mass-metallicity relation of dwarf galaxies:

Defining 3 dwarf galaxy population:

The "observed" clumpy fraction of NIHAO

KoCo - MPIA

MW's Stellar Disc Structure

Today's Stellar Disc Structure

- high alpha population has constant scale height
- low alpha population flares

MW's Stellar Disc Structure

Today's Stellar Disc Structure

- high alpha population has constant scale height
- low alpha population flares

Simulations: Gòmez+2016,

NGC 891

born hot 13 billion years old

11 billion years old -

9 billion years old

7 billion years old

5 billion years old

2 billion years old

image credit: Ivan Minchev

diskthicknessfromall.stars

High-resolution hydro simulations: Future plans: How much evolutionary memory is encoded in the structure of the stellar disc?

Kinematic decomposition of stellar discs

dissect the stellar disc in `classical' 6D phase space using

Galactic Structure Finder (GSF)

Obreja+(incl. Buck) 2018 subm.

parameter set (j_z /j_c , j_p /j_c , e)

- What is the chemo-kinematical structure of the disc?
- What are the differences between morphologically, chemically and kinematically defined disc components?
- Do the kinematics of (disc) stars encode information about the formation of the MW?

kinematic decomposition also possible for external galaxies: Zhu+2017

The Build-up of different kinematic components in simulations

see also: Amorisco2017 (stellar haloes), Teklu+2015 (ang. mom.), Burkert+2016 (observed ang. mom.) Monachesi+2016 (metallicity profile of stellar haloes)

Tobias Buck

High-resolution hydro simulations: Future plans: The information content of the orbital action space

What are orbital actions?

orbital actions are integrals of motion

steady state, axisymmetric case: orbital actions are conserved

orbital actions will be determined by Wilma Trick from Gaia data

image credit: PhD thesis Wilma Trick

What can we learn from orbital actions about the formation of the MW?

- How much evolutionary memory is encoded in the orbit-age-abundance distribution?
- What aspects of this distribution are generic to diskdominated galaxies?
- What aspects reflect the particular growth-history?
- Can we identify special stars via their orbital actions?

see also: Maffione+2015, McMillan+2008

How much evolutionary memory is encoded in the structure of the stellar disc?

I propose

- to study the structure of simulated stellar discs of MW analogues
 - kinematic decomposition
 - orbital action space

How did the Milky Way form?

How did the Milky Way form?

• clumps (Buck+2017)

- are ONLY in stellar light
- are NOT in stellar mass

dwarf galaxy population

 correct number, mass and structure of dwarf galaxies
backsplash galaxies are COMMON (Buck+2018 to be subm.)

How did the Milky Way form?

• clumps (Buck+2017)

- are ONLY in stellar light
- are NOT in stellar mass

dwarf galaxy population

 correct number, mass and structure of dwarf galaxies
backsplash galaxies are COMMON (Buck+2018 to be subm.)

structure of the MW

• How much evolutionary information is contained in the structure of MW's stellar disc? (planned)

How did the Milky Way form? NHAO你 Galaxy Simulations

• clumps (Buck+2017)

- are ONLY in stellar light
- are NOT in stellar mass

dwarf galaxy population

 correct number, mass and structure of dwarf galaxies backsplash galaxies are COMMON (Buck+2018 to be subm.)

structure of the MW

 How much evolutionary information is contained in the structure of MW's stellar disc? (planned)

