Clumpy galaxies at high redshift: Insights from the NIHAO simulations

Buck et al. 2017 (MNRAS) - arXiv:1612.05277

Gas in Galaxies Valetta 6th of October

Andrea V. Macciò, Aura Obreja, Aaron A. Dutton, Hans-Walter Rix

PhD student at MPIA

Animation by T. Buck (MPIA, NYUAD) based on NIIIAO simulations

Intro: What are clumpy galaxies?

- star forming disc galaxies at redshift 0.5 3
- observed to have UV-bright / H-alpha-bright clumps
- clump sizes ~1 kpc, clump masses 1e8 1e10 Msun

Intro: Clumpy galaxies in observations

Tobias Buck

Gas in Galaxies, Valetta

Why are clumpy galaxies interesting previous works/simulations

- clump formation via Violent Disc Instability (Dekel+2009)
- color gradient: clump inspiral

Obs.: Genzel+2006,2009, Förster-Schreiber+2006,2011, Wuyts+2012, Elmegreen+2013, Tadaki+2014, Murata+2014, Guo+2015, Shibuya+2016

Theory: Bournaud+2007,2008,2009,2014, Dekel+2009, Ceverino+2010,2012, Mandelker+2014, Moody+2014, Tamburello+2015, Mayer+2016, Oklopcic+2017

Tobias Buck

Gas in Galaxies, Valetta

06.10.17

Why are clumpy galaxies interesting previous works/simulations

- clump formation via Violent Disc Instability (Dekel+2009)
- color gradient: clump inspiral

Obs.: Genzel+2006,2009, Förster-Schreiber+2006,2011, Wuyts+2012, Elmegreen+2013, Tadaki+2014, Murata+2014, Guo+2015, Shibuya+2016

Theory: Bournaud+2007,2008,2009,2014, Dekel+2009, Ceverino+2010,2012, Mandelker+2014, Moody+2014, Tamburello+2015, Mayer+2016, Oklopcic+2017

Tobias Buck

Gas in Galaxies, Valetta

06.10.17

Why are clumpy galaxies interesting previous works/simulations

- clump formation via Violent Disc Instability (Dekel+2009)
- color gradient: clump inspiral

- **Obs.:** Genzel+2006,2009, Förster-Schreiber+2006,2011, Wuyts+2012, Elmegreen+2013, Tadaki+2014, Murata+2014, Guo+2015, Shibuya+2016
- Theory: Bournaud+2007,2008,2009,2014, Dekel+2009, Ceverino+2010,2012, Mandelker+2014, Moody+2014, Tamburello+2015, Mayer+2016, Oklopcic+2017

Tobias Buck

Gas in Galaxies, Valetta

06.10.17

4

Observed vs. simulated clumps: some tension...

simulations disagree on fate of clumps

simulations and observations probe different things

- observations: clumps in stellar light
- most theory: clumps in gas density

The NIHAO Simulation suite

90 zoom-in simulations from Milky-Way mass to dwarf galaxies scales

The NIHAO Simulation suite

90 zoom-in simulations from Milky-Way mass to dwarf galaxies scales

The post processing of NIHAO

19 high mass galaxies from the NIHAO sample

M_star > 1e9 M_sun at redshift z=1.5

Selection of clumps in light

7

The post processing of NIHAO

19 high mass galaxies from the NIHAO sample

M_star > 1e9 M_sun at redshift z=1.5

Selection of clumps in light

A. intrinsic luminosity calculated from simple stellar populations

7

The post processing of NIHAO

19 high mass galaxies from the NIHAO sample

M_star > 1e9 M_sun at redshift z=1.5

Selection of clumps in light

A. intrinsic luminosity calculated from simple stellar populations

B. radiative transfer post processing with GRASIL-3D (Dominguez-Tenreiro+2014)

Tobias Buck

Gas in Galaxies, Valetta

Gas in Galaxies, Valetta

^{06.10.17}

06.10.17 10

Tobias Buck

Gas in Galaxies, Valetta

06.10.17 10

Stellar mass maps of observations

Stellar mass maps of observations

Conclusions

Clumpy galaxies in NIHAO:

- agree well with observed relations
- are ONLY present in stellar light
- can NOT be found in stellar mass
- are not long lived and do not contribute to bulge growth

Conclusions

Clumpy galaxies in NIHAO:

- agree well with observed relations
- are ONLY present in stellar light
- can NOT be found in stellar mass
- are not long lived and do not contribute to bulge growth

Extra Material

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum

Differences to other Simulations

Differences to other Simulations

Differences to other Simulations

The fate of "intrinsic" clumps in NIHAO

Gas in Galaxies, Valetta

The "observed" clumpy fraction of NIHAO - correlation with galaxy property

The "observed" clumpy fraction of NHAO - correlation with galaxy property

Gas in Galaxies, Valetta

The "observed" clump properties of NHAO

06.10.17 20

The Gas fraction of NHAO

