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The Emergence of spatially and kinematically coherent Planes of
Satellite Galaxies in high-resolution Dark Matter only simulations:
It has recently been shown that a large fraction of the dwarf satellite galaxies

orbiting the Andromeda galaxy are surprisingly well-aligned in a thin, extended
and kinematically coherent planar structure. The presence of such a structure
seems to challenge the current Cold Dark Matter paradigm of structure formation,
which predicts a more uniform distribution of satellites around a central object. In
this thesis, I show that it is possible to obtain a thin, extended, apparently rotating
plane of satellites resembling the one in Andromeda in cosmological collisionless
simulations based on the Cold Dark Matter model. These new high resolution
simulations show a correlation between the formation time of the dark matter
halo and the thickness of the plane of satellites. The simulations produce a high
incidence of satellite planes as thin, extended and rich as the one in Andromeda,
when high concentration/early forming halos are selected. However, the analysis
of the detailed kinematics and the orbital poles of satellites in the planes shows that
these planes are not a long-lived rotating structure. In fact, there exists up to a 40%
chance of aligned satellites flying out of the plane within 500Myr. Furthermore it
will be shown that the plane appearance strongly depends on the specific viewing
angle. Nevertheless, by tracking the formation of the satellites in the plane, it can
be shown that they have been mainly accreted onto the main object along thin
dark matter filaments at high redshift. These results show that the presence of a
thin, extended, apparently rotating plane of satellites is not a challenge for the Cold
Dark Matter paradigm.





Eigenschaften räumlich und kinematisch zusammenhängender Ebe-
nen von Satelliten Galaxien in hochauflösenden Simulationen dunkler
Materie:
Es wurde kürzlich gezeigt, dass ein Großteil der um die Andromeda Galaxie

kreisenden Zwerggalaxien überraschenderweise in einer schmalen, ausgedehnten
und kinematisch kohärenten Ebene angeordnet sind. Das Vorhandensein einer
solchen Struktur scheint das gegenwärtig vorherrschende Strukturentstehungs-
paradigma der Kalten Dunklen Materie, das eine gleichförmigere Verteilung von
Satellitengalaxien um zentrale Objekte vorhersagt, zu gefährden. In dieser Master-
arbeit zeige ich, dass es in stoßfreien kosmologischen Simulationen basierend auf
dem Model der Kalten Dunklen Materie möglich ist, eine dünne, ausgedehnte und
scheinbar rotierende Ebene von Satellitengalaxien ähnlich derjenigen um Androme-
da zu erhalten. Diese neuen hochauflösenden Simulationen zeigen eine Korrelation
zwischen der Entstehungszeit der Halos aus Dunkler Materie und der Dicke der
Ebene aus Satellitengalaxien. Die Simulationen zeigen mit großer Häufigkeit Ebe-
nen ebenso dünn, ausgedehnt und reich an Satelliten wie diejenige um Andromeda,
wenn Dunkle Materie Halos einer hohen Konzentration/frühen Entstehungszeit
gewählt werden. Allerdings zeigt die Analyse der detaillierten Kinematik und der
Orbits der Satellitengalaxien, dass die Ebenen keine langlebige, rotierende Struktur
darstellen. Vielmehr bestehen sie aus bis zu 40% zufällig ausgerichteter Satelliten,
die bereits nach weniger als 500Myr aus der Ebene fliegen. Insbesondere hängt die
Erscheinung der Ebene sehr stark von der genauen Blickrichtung ab. Dennoch kann
durch Nachverfolgen der Entstehung der Satelliten in den Ebenen um Halos hoher
Konzentration/früher Entstehungszeit gezeigt werden, dass ein Großteil dieser
bei hoher Rotverschiebung entlang dünner Filamente aus Dunkler Materie in den
Haupthalo gesogen werden. Diese Resultate zeigen, dass das Vorhandensein einer
dünnen, ausgedehnten und scheinbar rotierenden Ebene keine Herausforderung
für das Paradigma der Kalten Dunklen Materie darstellt.
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1 Introduction
Although mankind has always gazed at the stars, it was only in the last 100 years
that astronomers realized that the Universe is larger than our own Galaxy. In
the beginning of the 20th century, the first observational evidence was obtained
showing that objects outside the Milky Way exist. It was realised that galaxies are
really just islands in the Universe, and their discovery directly led to the question of
how they were formed and how they evolve. In the following questions regarding
the Universe in general were asked. Is the Universe finite? Does it evolve over
time? Is there a beginning of the Universe? In fact these questions had been asked
before, but mankind had only been able to speculate about the answers. But with
the new observations made at the beginning of the 20th century mankind was able
to approach these questions in an empirical manner.
With the tremendous technical progress of the last few decades striking new

discoveries have been made. We are now able to get well-resolved pictures of
distant galaxies or, due to the finite speed of light, look millions of years back in
time by observing very distant galaxies. Additionally, computers have become more
powerful, making detailed simulations of galaxies and large scale structure possible.
Thus our knowledge about the Universe vastly increased and the field of astronomy,
particularly cosmology, the science of the Universe as a whole, evolved into a
quantitative science. Detailed studies of individual galaxies revealed the surprising
result that these galaxies contain much more mass than what is visible as stars and
gas. The largest component of their mass is invisible to us and only observable
through its gravitational effects. Hence it was named dark matter. A further boost in
knowledge was provided by observations of the first light to travel freely through
the Universe, the Cosmic Microwave Background (CMB) and the establishment
of a standard model of cosmology, the science of the Universe as a whole. The
basic parameters of this model have been determined to very high accuracy by
observations and are repeatedly confirmed through independent measurements.
However, there are many unsolved problems and questions that have been raised by
recent observations of the distinct features of galaxies. For example, it seems that
the satellite galaxies of our companion galaxy, the Andromeda galaxy, are aligned
in a thin rotating plane. This alignment remains unexplained in a cosmological
context and is the subject of this thesis.

1
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2 1 Introduction

1.1 Cosmological Standard Model
The Universe we live in can be described to a very high level of accuracy as an
expanding, almost flat space-time, the dynamics of which are governed by a col-
lisionless form of matter and a repulsive form of energy. The collisionless Cold
Dark Matter model (CDM) accompanied with a cosmological constant Λ (ΛCDM)
has become the standard model for describing our Universe. It is tremendously
successful in describing the expansion history, structure formation and related
statistical properties such as the power spectrum. In the following chapter this
model will be described in more detail.

1.1.1 Friedmann equations and the content of the Universe
The dynamics of the Universe are described by the Friedmann-Lemaître equations
for the scale factor a(t) = R(t)/R0, which measures the expansion R(t) of the
Universe at a time t relative to its present day expansion R0

1 (commonly: a(t =
0) = 0, a0 = 1). In a universal form they read:(

ȧ

a

)2

=
8πG

3
ρ− Kc2

a2
+

Λ

3
(1.1)

and
ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λ

3
(1.2)

where G denotes the gravitational constant, ρ the energy density of the Universe
in matter and radiation and K is a term describing the spatial curvature of the
Universe. Λ is the cosmological constant accounting for the effect of Dark Energy,
P is a pressure term and c is the speed of light.
In the cosmological standard model the curvature term K is equal to zero, result-

ing in the flat geometry of our Universe, and its energy-mass budget consists of
three components, commonly quantified by a density parameter Ωi measuring the
energy density of each component in terms of the critical density2 at present time.

Dark Energy dominates the energy density of the Universe at the present time and
its relative contribution is increasing. Its energy density ΩΛ has a negative
equation of state such that it exhibits negative pressure and is thus repulsive.

1Present day values are typically denoted by the subscript 0
2The critical density ρc,0 denotes the density at which the geometry of our Universe is flat. The
present day value is: ρc,0 = 2.7755 · 1011 h2M�/Mpc3
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1.1 Cosmological Standard Model 3

It is therefore responsible for the accelerated expansion of the Universe.
In the equations governing the expansion of the Universe, Dark Energy
is represented by the cosmological constant Λ, first introduced by Albert
Einstein for completely different reasons.

Matter consists of two fundamentally different sub-components. The larger of
the two components interacts only gravitationally, and only weakly via the
electro-weak force, if at all. Thus it does not radiate and is therefore not
directly observable, which is the reason why it was named Dark Matter.
It was originally introduced as an invisible source of gravitation in galaxy
cluster to account for their dynamics (Zwicky 1933). Nothing is known of
its fundamental nature apart from how it interacts. To date it is not yet
been directly detected but many attempts to resolve these problems both
theoretically and observationally are being made (Bertone et al. 2005). Dark
matter governs the structure formation and the evolution of the dark structure
of the Universe on all scales.

The other component contributing to the matter content of the Universe is
much smaller compared to the budget in Dark Matter. It interacts electro-
magnetically, producing radiation, and is therefore directly observable. This
form is “normal”, visible matter (e.g. gas and dust), forming stars3, planets
and everything we know from our daily life. It is made out of baryons and
its energy density Ωb is only 0.15Ωm (Planck Collaboration et al. 2014). In
the past the matter energy density used to dominate the expansion of the
Universe but its relative contribution is decreasing in favor of Dark Energy.

Radiation The energy density of radiation Ωr was important at very early times in
the evolution of the Universe, but can be neglected at present times (Aceves
2013). As the name implies, it is the energy density contained in photons,
and it mainly consists of “Cosmic Microwave Background” (CMB, see 1.1.2)
photons.

To summarize our Universe mainly consist of dark or unknown energy forms
namedDark Energy Λ and Cold Dark Matter (CDM).Therefore the theory describing
the evolution of such a Universe is called ΛCDM. At the present time the sum of all
three components is unity (Planck Collaboration et al. 2014),

Ωr,0 + Ωm,0 + ΩΛ,0 = 1 (1.3)

3especially Death Stars (Vader et al. 1977)
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4 1 Introduction

resulting in a Euclidean geometry of the Universe. As mentioned above, the contri-
butions of all of the components scale with the expansion of the Universe, changing
their relative contribution, but they always add up to the value of the critical density,

ρcrit(t)

ρcrit,0
=

H(t)

H0

= Ωr(t) + Ωm(t) + ΩΛ(t) =
Ωr,0

a(t)4
+

Ωm,0

a(t)3
+ ΩΛ,0 (1.4)

whereH = ȧ/a is the Hubble constant measuring the relative expansion rate of the
Universe. The present day value is commonly presented asH0 = h100 km s−1 Mpc−1.
A more convenient way of describing the expansion of the Universe is in terms of
the redshift z, defined as z = (1/a)− 1. This makes the expansion of the Universe
directly measurable from observations, since the redshift of objects can be easily
obtained from spectra. For this thesis, the values of the various parameters in equa-
tion 1.4 were taken from the Planck Collaboration (2014) with numerical values
of Ωr < 10−4, Ωm = 0.3175, ΩΛ = 0.6825 and h = 0.671 inferred from cosmic
microwave background (CMB) radiation measurements (see section 1.1.2).

1.1.2 Cosmic Microwave Background
The cosmic microwave background (CMB) is a nearly isotropic thermal radiation
field of temperature ∼2.7 K present everywhere in the Universe. It has remarkably
small fluctuations of order ∆T/T ∼ 2 · 10−5 and was first detected by Penzias
and Wilson (1965). It originates from the light released during recombination and
encodes a great deal of valuable information about the very early Universe as well
as the cosmological parameters in general. The origin and importance of the CMB
in cosmology is described in this section.
Up to 380,0004 years after the Big Bang, matter and radiation were in thermal

equilibrium. The temperature and density of the ancient Universe were extremely
high, and the Universe was filled with a hot plasma of protons, electrons, neutrinos
and photons. Due to the Thompson scattering of photons from free electrons, the
mean free path of photons was incredibly small and photons were not able to
stream freely. Due to continued expansion of the Universe, the temperature and
densities dropped until electrons and protons were able to recombine into neutral
hydrogen atoms. At the stage when electron number densities fell below a critical
value, photon-electron scattering stopped. Matter and radiation dropped out of
thermal equilibrium and decoupled, and photons started propagating through the
Universe with an energy spectrum of thermal radiation whose temperature was

4This is roughly 1.2 · 1013 s or 2.22 · 1056 Planck times, where the Planck time measures the smallest
possible time interval.
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1.1 Cosmological Standard Model 5

Figure 1.1: The anisotropies of the Cosmic microwave background (CMB) as observed by
Planck. The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky
when the Universe was just 380,000 years old. It shows tiny temperature fluctuations that
correspond to regions of slightly different densities, representing the seeds of all future
structure, including the present stars and galaxies. (Planck Collaboration et al. 2014).

that of the matter-radiation plasma at the point of decoupling. As the Universe
expands, photons are redshifted and the temperature of their thermal radiation
field decreases. Nowadays, this radiation field is observable as the CMB.
Small anisotropies in the CMB directly translate into anisotropies in the matter

distribution of the Universe, and observational data of the CMB enables us to quan-
tify initial density perturbations at the time of decoupling, when structures started
to grow. Thus the CMB can tell us the initial conditions of our Universe to very
high accuracy. We therefore know the exact initial configurations for our models
describing the Universe. In this sense, Figure 1.1 represents the initial configuration
of our Universe, whereas Figure 1.2 shows the outcome of the evolution of this
initial configuration up to the present day.
The initial density perturbations are conveniently described by the matter power

spectrum P (k), the variance of over-densities δ := δρ/ρ̄ in Fourier space.〈
δ̂(k)δ̂∗(k′)

〉
=: (2π)3 P (k) δD(k − k′) (1.5)

In this equation, δD is the Dirac delta distribution. The power spectrum is a measure
of the amplitude of density perturbations on scales λ = 2π/k, and must not depend
on direction in the isotropic case, P (k) = P (k). All of the statistical information
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6 1 Introduction

46

Figure 1.2:All-sky map of the galaxies in the 2MASS survey, colour-coded by their distance
from the Earth. Blue dots show the nearest sources, through green to the most distant
sources shown in red. This picture represents the present day stage of our Universe, evolved
from the initial conditions set by the CMB. The survey picture is overlaid by a picture of
our Galaxy indicating where the sky is obscured by its disk (Skrutskie et al. 2006).

needed to reconstruct the density field is encoded in the power spectrum. From
the principal of scale invariance it follows that the primordial power spectrum has
to be a power law with index n. The shape of the power spectrum is subsequently
altered during the evolution of the Universe (compare 1.2).

1.2 Structure Formation in ΛCDM

Today’s Universe exhibits very large density fluctuations between galaxy cluster
environments and nearly empty space called voids (compare also Fig.: 1.2), while
the amplitudes of the CMB anisotropies are very small (see section 1.1.2). This
implies that the inhomogeneities must have grown significantly since early times in
the Universe. This evolution of the matter density field occurs because gravitational
forces amplify tiny density fluctuations. Over-dense regions decouple from the
expansion of the Universe due to their self-gravitation. As a consequence these
regions expand more slowly, and relative density fluctuations get amplified. At a
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1.2 Structure Formation in ΛCDM 7

31

timation method in its entirety, but it should be equally
valid.

7.3. Comparison to other results

Figure 35 compares our results from Table 3 (modeling
approach) with other measurements from galaxy surveys,
but must be interpreted with care. The UZC points may
contain excess large-scale power due to selection function
effects (Padmanabhan et al. 2000; THX02), and the an-
gular SDSS points measured from the early data release
sample are difficult to interpret because of their extremely
broad window functions. Only the SDSS, APM and angu-
lar SDSS points can be interpreted as measuring the large-
scale matter power spectrum with constant bias, since the
others have not been corrected for the red-tilting effect
of luminosity-dependent bias. The Percival et al. (2001)
2dFGRS analysis unfortunately cannot be directly plotted
in the figure because of its complicated window functions.

Figure 36 is the same as Figure 35, but restricted to a
comparison of decorrelated power spectra, those for SDSS,
2dFGRS and PSCz. Because the power spectra are decor-
related, it is fair to do “chi-by-eye” when examining this
Figure. The similarity in the bumps and wiggles between

Fig. 35.— Comparison with other galaxy power spectrum measure-
ments. Numerous caveats must be borne in mind when interpreting
this figure. Our SDSS power spectrum measurements are those from
Figure 22, corrected for the red-tilting effect of luminosity dependent
bias. The purely angular analyses of the APM survey (Efstathiou
& Moody 2001) and the SDSS (the points are from Tegmark et al.
2002 for galaxies in the magnitude range 21 < r∗ < 22 — see also
Dodelson et al. 2002) should also be free of this effect, but rep-
resent different mixtures of luminosities. The 2dFGRS points are
from the analysis of HTX02, and like the PSCz points (HTP00) and
the UZC points (THX02) have not been corrected for this effect,
whereas the Percival et al. 2dFGRS analysis should be unafflicted
by such red-tilting. The influential PD94 points (Table 1 from Pea-
cock & Dodds 1994), summarizing the state-of-the-art a decade ago,
are shown assuming IRAS bias of unity and the then fashionable
density parameter Ωm = 1.

Fig. 36.— Same as Figure 35, but restricted to a comparison
of decorrelated power spectra, those for SDSS, 2dFGRS and PSCz.
The similarity in the bumps and wiggles between the three power
spectra is intriguing.

Fig. 37.— Comparison of our results with other P (k) constraints.
The location of CMB, cluster, lensing and Lyα forest points in this
plane depends on the cosmic matter budget (and, for the CMB,
on the reionization optical depth τ), so requiring consistency with
SDSS constrains these cosmological parameters without assumptions
about the primordial power spectrum. This figure is for the case of a
“vanilla” flat scalar scale-invariant model with Ωm = 0.28, h = 0.72
and Ωb/Ωm = 0.16, τ = 0.17 (Spergel et al. 2003; Verde et al. 2003,
Tegmark et al. 2003b), assuming b∗ = 0.92 for the SDSS galaxies.
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Figure 2: Differential halo number density as a function of mass and epoch. The function n(M,z) gives

the comoving number density of halos less massive than M. We plot it as the halo multiplicity function

M2ρ−1 dn/dM, where ρ is the mean density of the universe. Groups of particles were found using

a friends-of-friends algorithm6 with linking length equal to 0.2 of the mean particle separation. The

fraction of mass bound to halos of more than 20 particles (vertical dotted line) grows from 6.42×10−4

at z= 10.07 to 0.496 at z= 0. Solid lines are predictions from an analytic fitting function proposed in

previous work11, while the dashed lines give the Press-Schechter model14 at z= 10.07 and z= 0.

6

Figure 1.3: Left : Power spectrum constraints from different measurements (Tegmark et al.
2004). Right : Differential halo number density as a function of mass and redshift in the
Millennium simulation (Springel et al. 2005).

critical value of δcrit ∼ 1.69, density fluctuations start to collapse into gravitationally
bound objects.
As described above, the much larger part of the cosmic matter is Dark Matter. In

the framework of ΛCDM, Dark Matter consists of heavy particles with negligible
velocity dispersion and is therefore dynamically cold, hence the name Cold Dark
Matter (CDM). Luminous baryonic matter contributes .20% of the total matter
content. Since baryonic matter drops out of thermal equilibrium later than Dark
Matter, primordial structure formation is governed by dark matter, and the resulting
structures are called dark matter halos. CDM structures grow in a hierarchical
way, with smaller scales collapsing earlier than larger scales. The explanation for
the hierarchical structure formation in CDM is found in the precise shape of the
power spectrum given by the transfer function. Due to the finite speed of light
as propagation speed of gravitational interactions and the fact that the Universe
has a finite age gravitational interactions are limited to a volume of radius rH, the
Hubble radius, which acts like an event horizon. Structures smaller than this radius
are able to collapse while perturbations larger than this radius can only grow but
not collapse. Since the Big Bang the Hubble radius has grown and therefore more
and more perturbations could enter the horizon. The precise shape of the power
spectrum depends on the time when perturbations enter the horizon. At early times,
when baryonic matter was in thermal equilibrium with radiation the growth of
perturbations smaller than the horizon is strongly suppressed by radiation pressure,
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8 1 Introduction

while perturbations larger than the horizon grew until they entered the horizon
and were suppressed. At later times, after dropping out of thermal equilibrium,
the structures could grow unopposed on all scales bigger than the Jeans scale. On
galactic scales, non-linear effects of gravity transport power from larger to smaller
scales (for further details see Schneider (2006)).
Due to the non-linearity of structure formation, numerical simulations are best

suited for making predictions based on a cosmological model. The success of ΛCDM
lies in the excellent agreement of observations with results from numericalN -body
simulations of structure formation. Under the assumption that galaxies trace the
distribution of Dark Matter in the Universe, the observed distribution of galaxies
is in excellent agreement with the clustering of Dark Matter halos in numerical
simulations (Springel et al. 2005). This can be seen, for example, by comparing large
scale surveys with large scale simulations of structure formation (see Fig.: 2.1).
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2 Simulating Structure Formation
In this chapter, the theory for describing structure formation in a ΛCDM Universe
is presented. Firstly, the equations governing structure formation are introduced
and explained. Secondly, the solutions of these equations obtained using numerical
computer programs and the possible algorithms to solve them are described.

2.1 Press-Schechter formalism for Structure Formation
The description of the Press-Schechter formalism in this section is mainly based
on the text book by Schneider (2006). Structure formation in the Universe can be
understood in the framework of perturbation theory. From observations of the
CMB it is clear that initial density perturbations must have grown over time. The
density field can be described by the relative density contrast

δ(r, t) =
ρ(r, t)− ρ̄(t)

ρ̄(t)
(2.1)

where ρ̄(t) is the mean density in the Universe at time t. For length scales smaller
than the Hubble radius, structure formation can be described in the framework of
linear perturbation theory. The second-order differential equation governing the
growth of the density contrast δ reads:

∂2δ

∂t2
+

2ȧ

a

∂δ

∂t
= 4πGρ̄ δ (2.2)

where a is the cosmic scale factor. This equation has solutions of the form

δ(r, t) = D(t) δ̃(r) (2.3)

whereD(t) is the growth factor describing the temporal evolution of a perturbation
and δ̃(r) is an arbitrary function of the spatial coordinates. In the special case
of an Einstein-de Sitter Universe D(t) is of the form D(t) = (t/t0)

2/3 = a(t).
These equations describe how density perturbations grow, but they are not able
to describe the complete function δ(r) of a Universe. The exact functional form

9
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10 2 Simulating Structure Formation

Figure 1: The galaxy distribution obtained from spectroscopic redshift surveys and from mock
catalogues constructed from cosmological simulations. The small slice at the top shows the CfA2
“Great Wall”3, with the Coma cluster at the centre. Drawn to the same scale is a small section of the
SDSS, in which an even larger “Sloan Great Wall” has been identified100. This is one of the largest
observed structures in the Universe, containing over 10,000 galaxies and stretching over more than 1.37
billion light years. The wedge on the left shows one-half of the 2dFGRS, which determined distances
to more than 220,000 galaxies in the southern sky out to a depth of 2 billion light years. The SDSS
has a similar depth but a larger solid angle and currently includes over 650,000 observed redshifts
in the northern sky. At the bottom and on the right, mock galaxy surveys constructed using semi-
analytic techniques to simulate the formation and evolution of galaxies within the evolving dark matter
distribution of the “Millennium” simulation5 are shown, selected with matching survey geometries and
magnitude limits.

28

Figure 2.1:The galaxy distributions obtained from spectroscopic redshift surveys and from
mock catalogues constructed from cosmological simulations are presented for comparison.
Thewedge on the left (blue) shows data from the 2dF galaxy redshift survey, whichmeasured
the distances to more than 220,000 galaxies in the southern sky out to a depth of 2 billion
light years. The upper wedge (purple) shows SDSS data, which includes over 650,000
observed galaxies in the northern sky. At the bottom and on the right (red), mock galaxy
surveys constructed using semi-analytic techniques to simulate the formation and evolution
of galaxies in the Millennium simulation are shown (Springel et al. 2006).
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2.1 Press-Schechter formalism for Structure Formation 11

depends on the specific initial conditions. It is therefore desirable to describe the
statistical properties of structure formation rather than detailed mass distributions.
In this sense, the density field δ is considered a random field and any individual
mass distribution with the same statistical properties as δ is called a realization of
the random field. The basic quantity used to describe the statistical properties of a
random field is the power spectrum, P (k), defined as the Fourier transformation of
the two point correlation function.〈

δ̂(k)δ̂(k′)
〉
= (2π)3 P (k) δ3D(k − k′) (2.4)

where δ̂(k) is the Fourier transform of the density contrast and δ3D is the three
dimensional Dirac delta distribution. If, at some point in time, the density contrast δ
in some region of the Universe exceeds the threshold of δcrit = 1.69, it will collapse
and form a dark matter halo. Press and Schechter (1974) introduced a model that
allows computation of the number density of collapsed objects as a function of
their mass from the density field δ. This formalism will be described here.
The density field smoothed on a comoving scale R reads:

δR (r, R) =

∫
δ (r)W (r − r′, R) d3r′ (2.5)

The smoothed field contains only fluctuations on scales larger thanR. If the density
fluctuation is sufficiently large, such that δ & δcrit, this density peak will collapse to
form an object of mass M ∼ (4π/3)R3ρ. If the statistical properties of the density
field δ are Gaussian, these properties are solely defined by the power spectrum, and
the probability for a density peak with an amplitude higher than the threshold δcrit
is given by:

P (δ > δcrit) =
1√

2πσ(M)

∫ ∞

δcrit

exp
(
− δ2R
2σ2

R(M)

)
dδR (2.6)

HereM is the mass of a sphere of radiusR as defined previously, and σR denotes the
variance of the density field δ(r) on a given scale R, which can easily be calculated
from the convolution of the power spectrum with the window function W

σ2
R(M) =

1

2π2

∫ ∞

0

P (k) W̃ 2(k, R) k2 dk (2.7)

Under the assumption that the mass function of collapsed objects is equal to twice
the probability of finding a density peak above the threshold δcrit, one obtains the
number density of collapsed objects as:

n(M, t) dM = −
√

2

π

dσ(M)

dM
ρ̄ δc

Mσ2(M)
exp

(
− δ2crit
2σ2(M)

)
dM (2.8)
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12 2 Simulating Structure Formation

A plot of this function for different times (redshifts) is shown in Figure 1.3

2.2 N -body Simulation of Structure Formation
The formalism of Press and Schechter as introduced in the previous section describes
structure formation in linear theory. It gives remarkably good results and predicts
the number density of dark matter halos correctly. However, structure formation
is a highly non-linear process, which for the dark sector (CDM) is entirely driven
by gravity. To capture it properly, one needs to account for non-linearities, which
are practically impossible to calculate analytically. One possibility for modelling
the structure formation in detail is to perform N -body simulations representing
a density distribution of a large number (N ) of mass elements (particles) and to
evaluate their mutual gravitational forces. This is typically done using N -body
codes, which integrate the equations of motion for the 6N phase space coordinates.
Simple integration of the orbit of every single particle needs N2 force evaluations.
A very large number of particles is needed to resolve structure formation properly.
High resolution simulations can therefore become extremely computationally ex-
pensive, and several techniques have been developed to reduce the computational
expense. In general, two different kinds of codes have been developed for simu-
lating structure formation. Tree codes build on Lagrangian integration schemes
and particle mesh codes utilize Eulerian integration schemes. For the simulations
performed for this thesis, the tree code pkdgrav2 by Stadel (2001, 2013) was used.

2.2.1 Tree codes and the Lagrangian integration scheme
Lagrangian integration schemes discretize a mass distribution into single mass
elements (particles) and trace the flow of matter. The properties of these particles
are arbitrary, and they have nothing in common with real particles like, for example,
atoms. Rather, the choice of particles and their mass depends on the desired resolu-
tion. All of the required physical quantities like velocity, pressure, temperature or
mass are then assigned to these particles and traced as the particles flow. Because
the particles move with the flow the total time derivative d/ dt for all of the desired
quantities has to be integrated. To save on computational costs, particles can be
grouped together. As the gravitational force falls off with distance proportional
1/r2, particles at large distances from each other contribute very little to the total
force. One can therefore divide the simulated volume recursively into sub-volumes
containing fewer and fewer particles until a pre-specified minimum number of
particles remains in the lowest sub-volume cell. This division into sub-volumes
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2.2 N -body Simulation of Structure Formation 13

is performed by demanding the same number of particles or an equal volume for
the resulting sub-volume. An equal number of particles results in an efficient
parallelization, while an equal amount of volume gives better accuracy for the force
calculation (Dubinski 1996; Stadel 2001).
Dividing the volume in this way results in a hierarchical tree structure, which

gives the tree code its name. For sufficiently distant particles, the opening angle of
a cell of the tree becomes small and the gravitational force of all the particles in
the cell can be approximated by a multipole expansion. Thus tree codes achieve a
scaling proportional to N log(N) (Barnes and Hut 1986). For a detailed description
of the tree method implemented in pkdgrav2 see Stadel (2001).
Special care has to be taken for close encounters between two particles. As the

particles do not represent a physical body but rather an approximation of a contin-
uous mass distribution, the direct integration of their forces at close encounters
could lead to a spurious increase in kinetic energy. This is due to the fact that the
time spent in close encounters is much smaller than the time of one integration
step, and therefore integrating over one time step leads to a much larger mean
acceleration of the particles. In order to reduce this numerical artefact, the gravi-
tational potential can be smoothed below a certain length scale by introducing a
gravitational softening length ε (Power et al. 2003) to modify the Green’s function

F (r) = − 1

r2 + ε2
(2.9)

Thus a lower bound on the spatial resolution of the simulation is introduced, where
typically only structures above 2.5ε are robustly resolved (Klypin et al. 2001; Power
et al. 2003).

2.2.2 Mesh codes and the Eulerian integration scheme
In contrast to the Lagrangian scheme, Eulerian schemes assign physical quantities
to volume elements at fixed positions. They discretize space with a Cartesian grid
and then solve the equations of motion at spatially fixed points, in order to calculate
the flow of quantities through a given volume element. Therefore, the partial time
derivative ∂/∂t is integrated at each time step. To solve for the flux through a
given cell, the Riemann problem, which describes the evolution of discontinuities,
has to be solved at the cell interfaces. For this reason, Eulerian methods are well
suited to resolving shocks and instabilities. In order to resolve large scales and
large gradients in the quantities, the mesh can be refined locally (adaptive mesh
refinement, AMR). As with tree codes, mesh codes scale asN log(N) (Toukmaji and
Board 1996). However, mesh codes are not Galilean invariant (Wadsley et al. 2008;
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14 2 Simulating Structure Formation

Tasker et al. 2008), which makes them particularly bad for simulating galaxy and
structure formation, where high relative velocities are often present. Nevertheless,
attempts to overcome this problem are being made by introducing moving mesh
codes, where the mesh cells move with the flow of matter. For more details see
Springel (2010).
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3 High Resolution Simulation

Using the methods described in the previous chapter, structure formation in the
Universe can be modelled accurately and the formation process of galactic dark
matter halos can be observed. Initial density perturbations collapse into so called
sheets and filaments with a characteristic length scale of ∼100Mpc, forming a
web-like structure called the cosmic web. At the nodes of these filaments, galaxy
clusters and massive galaxies form. The outcome of such large scale simulations,
e.g. the Millennium II simulation (Boylan-Kolchin et al. 2009) can be compared
to surveys of equal scale such as SDSS (Abazajian et al. 2009) or 6dF (Jones et al.
(2009), see also Figure 2.1). By zooming into a specific region of the cosmic web
and refining this particular region to high resolution, one can study the structure
and substructure formation of, for example, a galaxy and its dwarf galaxies, in a
cosmological context. For this purpose, one needs to derive initial conditions for
the high resolution run out of the initial conditions used for the lower resolution
simulation. The process of creating these initial conditions will be described in this
chapter.

3.1 Initial conditions for high resolution simulations
In order to study detailed structures of dark matter halos in a cosmological context,
one needs enough resolution to robustly resolve substructures. This means that
for a given subhalo mass, one needs a sufficient number of dark matter particles to
sample in this halo. For example, to resolve a 108 h−1M� dark matter halo robustly,
one needs on the order of 100 dark matter particles, which leads to a particle mass
of about 106 h−1M�. Sampling an entire cosmological volume with such particles is
too computationally expensive. Instead, one can run a cosmological simulation with
higher mass particles to resolve the main halos and afterwards select interesting
ones to rerun in much higher resolution. Thereby the large scale mass distribution
is sampled with low resolution particles (with high mass particles) while for the
high resolution (low mass particle) region, the volume containing all of the particles
in the halo of interest is sampled using particles with lower masses, so that the
mass distribution of the underlying low resolution simulations is reproduced. There
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16 3 High Resolution Simulation
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z=zIC z=zIC z=0

Figure 3.1: Schematic of the creation process of the initial conditions for “zoom-in” sim-
ulations. The upper panels represent a low resolution simulation. The left panel shows
the particles on an unperturbed Cartesian grid at z = zIC, the middle panel shows the
perturbed particle positions at z = zIC and the right panel shows the outcome of the
simulation at z = 0. Thelower panels represent the high resolution simulation with small
black dots showing the high resolution particles of lower mass, big black dots showing
the low resolution particles sampling the large scale max distribution and big grey dots
showing the the position of the former low resolution particles in the region of interest.
From left to right, the unperturbed Cartesian grid of particles, the perturbed grid of particles
and the evolved simulation are shown. The dashed and solid black lines in the middle and
respectively in the left panels show the Lagrangian volume of the region of interest. The
figure is taken from Herpich (2013).

are many examples of such “zoom-in” simulations (e.g. Navarro et al. (1996, 1997);
Springel et al. (2008); Gillet et al. (2015)). An overview of how the initial conditions
are set in such simulations will be given below.
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3.1 Initial conditions for high resolution simulations 17

Figure 3.2: A snapshot of the initial conditions for a “zoom-in” simulation. The dark blue
part in the middle is sampled by the lowest mass particles with the lowest inter-particle
distance, followed by layers of increasing particle masses and inter-particle distances. The
highest particle mass layer, reproducing the large scale mass distribution of the whole box,
is not shown here.

3.1.1 Zel’dovich Approximation

Initial conditions can be easily constructed using the Zel’dovich approximation,
first introduced by Zel’dovich (1970). This theory is based on an approximation of
structure growth in the early universe that extrapolates the solutions of perturbation
theory for gravitational instabilities from the linear regime to the nonlinear regime.
The Zel’dovich approximation has been proven to be very accurate in the linear
regime, and by extrapolation one obtains qualitative models for structure growth
in the nonlinear regime (δ � 1). Therefore this approach is well suited to create
initial conditions for N -body simulations.
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18 3 High Resolution Simulation

The necessary initial conditions consist of a set of position and velocity values
at very high redshift (z ∼ 99) and hence very early times in the Universe. The
spatial position r is calculated as a function of time and the initial Lagrangian
coordinate q of the particle (Shandarin and Zeldovich 1989) and is implemented in
comoving coordinates x. The evolution of the comoving coordinate x is given by
the Lagrangian coordinate q itself and a contribution from the displacements p(q)
caused by forces from a potential field.

x(t, q) =
r(t, q)

a(t)
= q + b(t)p(q) (3.1)

In this equation a(t) is the cosmic expansion factor, determined solely from cosmo-
logical parameters and b(t) is the growth rate of density perturbations. From linear
density perturbations it follows that b(t)/a(t) = D(t) (see chapter 2, Eq.: 2.3). The
displacements derived from the potential field can be calculated as follows

p(q) = F (q) = −∇Φ(q) (3.2)

where the potential field Φ is related to the density field according to the Poisson
equation 2.2. For convenience the Poisson equation is solved in Fourier space. On
the one hand the information of the density field is given by the power spectrum
(Eq.: 1.5), which is a function of the Fourier modes k, and on the other hand the
partial differential Poisson equation in real space becomes an algebraic equation in
Fourier space, which makes the solution much more straightforward.

− k2Φ̂(k) = 4πGρ̂(k) (3.3)

In the simulations, a finite volume V with periodic boundary conditions is used to
represent a small fraction of the cosmic volume. In this case, the power spectrum
is given by

P (k) =

〈
δ̂(k)δ̂∗(k)

〉
V

(3.4)

(Binney and Tremaine 2008) where the density field δ is represented by a Gaussian
random field following the power spectrum. Thus the expectation value can be
calculated as the mean value. A combination of equation 3.3 and 3.4 makes it
possible to calculate the potential field Φ̂(k). From this the forces F̂ (q) in Fourier
space can be calculated as:

F̂ (q) = −ikΦ̂(q) (3.5)

Transforming this equation back to real space and plugging it into the Zel’dovich
approximation (Eq.: 3.1) leads to the initial comoving positions. In such a way,
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3.2 Creating high resolution simulations 19

Table 3.1: The halo properties of all the high resolution simulations run for this thesis.

Halo Box size
[h−1Mpc]

M200

[1012 h−1M�]
c200 N200 Force soft.

[h−1kpc]
1 80 1.003 12.03 7 625 912 0.29
2 80 1.389 11.35 5 408 955 0.36
3 80 0.848 6.86 6 448 219 0.29
4 60 0.626 13.30 7 105 711 0.25
5 60 0.864 13.93 9 808 180 0.25
6 60 0.702 10.67 7 968 616 0.25
7 60 0.535 17.19 6 071 696 0.25
8 60 0.637 4.18 7 230 898 0.25
9 60 0.907 6.93 7 502 238 0.27
10 60 0.813 7.19 9 226 352 0.25
11 60 0.654 5.63 7 428 609 0.25
12 60 0.890 7.65 7 367 008 0.25
13 60 0.661 5.63 7 499 975 0.25
14 60 0.570 8.19 6 471 415 0.27
15 60 0.760 9.14 8 630 941 0.25
16 60 0.831 8.69 9 430 020 0.25
17 60 0.872 11.63 7 215 346 0.28
18 30 0.736 13.62 8 351 551 0.25
19 30 1.321 11.29 10 275 350 0.25
20 30 1.028 6.37 11 666 510 0.25
21 30 0.922 7.82 10 464 423 0.25

the initial spatial positions of the particles can be calculated from cosmological
parameters. The corresponding initial velocities then follow from the time derivative
of the Zel’dovich approximation as:

ẋ(t, q) =
d
dt

[q + b(t)p(q)] = ḃ(t)p(q) (3.6)

3.2 Creating high resolution simulations
The initial conditions used for the simulations run for this thesis were created with
a modified version of the grafic2 package by Bertschinger (2001), as described in
Penzo et al. (2014). The refinement level was chosen to maintain a roughly constant
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20 3 High Resolution Simulation

relative resolution per halo, for example, ∼107 dark matter particles with particle
masses of about 105 h−1M�. This allows reliable resolution of the substructure
down to halo masses of ∼107 h−1M�.

The halos for refinement were selected from the cosmological boxes from Dutton
and Macciò (2014), assuming Planck Cosmology (Planck Collaboration et al. (2014)).
The halos were selected according to their concentration parameter, with the aim to
have an equal number of high, average and low concentration halos. For these halos,
high resolution initial conditions were created. First, all particles within three to
five times the virial radius at z = 0 were identified by their ID. The particle IDs are
constant throughout entire simulations, as dark matter particles can not be created
or destroyed. With these IDs, the particles can be identified on the initial Cartesian
grid. The next step was to reenter the simulation at the appropriate region, and
each of the particles was split up into N3

HR particles, equally distributed in a cube
of side length equal to the inter particle distance of the “parent” particles, centred
on the “parent” particle position. Next, regions were created with intermediate
resolution particles. In this case, the particles were split into N3

MR particles in the
same process as described above. Depending on the zooming factor, there were
several such intermediate regions with increasing particle mass and inter particle
distance and thus decreasing resolution. Figure 3.1 shows a sketch of this process.
Since in this thesis, the goal was to reach nearly the same relative resolution for all
halos (∼107 dark matter particles per halo), the zooming factors depended on the
halo mass and box size such that for each halo a different zooming factor was used.
Detailed information on the zoomed halos can be found in Table 3.1.

The initial conditions created this way were evolved with pkdgrav2 (Stadel 2013)
up to redshift z = 0 and halos were identified using the AMIGA halo finder (AHF).
This halo finder is able to deal with different particle masses and variable resolution
levels, as well as to identify substructure (Knollmann and Knebe 2009).

In the high resolution runs, the same halo as that identified in the low resolution
run had to be identified. Typically it was the one with the highest number of
particles, but not necessarily the most massive one. It was then necessary to check
whether there were high mass or intermediate mass (lower resolution) particles
in the virial radius or the region of interest of the halo. These particles can alter
the outcome of a simulation drastically, and if there are some of them in the region
of interest of the high resolution halo, one has to choose a bigger region around
the low resolution halo for refinement and rerun the whole simulation. Figure 3.2
shows a visual impression of a sample IC setup for a high resolution run.
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3.3 CDM Substructure Problem 21
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Fig. 1.—Density of dark matter within a cluster halo of mass 5#
(top) and a galaxy halo of mass (bottom). The edge of14 1210 M 2# 10 M, ,

the box is the virial radius, 300 kpc for the galaxy and 2000 kpc for the cluster
(with peak circular velocities of 200 and 1100 km s , respectively).!1

Fig. 2.—Abundance of cosmic substructure within the Milky Way, the Virgo
Cluster, and our models of comparable masses. We plot the cumulative numbers
of halos as a function of their circular velocity, , where is1/2v = (Gm /r ) mb b bc

the bound mass within the bound radius of the substructure, normalized torb
the circular velocity, Vglobal, of the parent halo that they inhabit. The dotted
curve shows the distribution of the satellites within the Milky Way’s halo
(Mateo 1998), and the open circles with Poisson errors are data for the Virgo
Cluster (Binggeli et al. 1985). We compare these data with our simulated
galactic mass halo (dashed curves) and cluster halo (solid curve). The second
dashed curve shows data for the galaxy at an earlier epoch, 4 billion years
ago—dynamical evolution has not significantly altered the properties of the
substructure over this timescale.

make a comparative study with observations and simulations
of larger mass halos.

2. SUBSTRUCTURE WITHIN GALAXIES AND CLUSTERS

We simulate the hierarchical formation of dark matter halos
in the correct cosmological context using the high-resolution
parallel treecode PKDGRAV. An object is chosen from a sim-
ulation of an appropriate cosmological volume. The small-scale
waves of the power spectrum are realized within the volume
that collapses into this object with progressively lower reso-
lution at increasing distances from the object. The simulation
is then rerun to the present epoch with the higher mass and
force resolution. We have applied this technique to several halos
identified from a 106 Mpc3 volume, including a cluster similar
to the nearby Virgo Cluster (Ghigna et al. 1998) and a galaxy
with a circular velocity and isolation similar to the Milky Way.
The cosmology that we investigate here is one in which the

universe is dominated by a critical density of cold dark matter,
normalized to reproduce the local abundance of galaxy clusters.

The important numerical parameters to remember are that each
halo contains more than one million particles within the final
virial radius rvir and that we use a force resolution that is ∼0.1%
of rvir. Further details of computational techniques and simu-
lation parameters can be found in Ghigna et al. (1998) and
Moore et al. (1999). Here we focus our attention directly on
a comparison with observations.
Figure 1 shows the mass distribution at a redshift of z = 0

within the virial radii of our simulated cluster and galaxy. It
is virtually impossible to distinguish the two dark matter halos,
even though the cluster halo is nearly a thousand times more
massive and forms 5 Gyr later than the galaxy halo. Both
objects contain many dark matter substructure halos. We apply
a group-finding algorithm to extract the subclumps from the
simulation data, and we use the bound particles to measure
their kinematical properties directly: mass, circular velocity,
radii, and orbital parameters (cf. Ghigna et al. 1998). Although
our simulations do not include a baryonic tracer component,
we can compare the properties of these systems with obser-
vations using the Tully-Fisher relation (Tully & Fisher 1977).
This provides a simple benchmark for future studies that in-
corporate additional physics such as cooling gas and star
formation.
Figure 2 shows the observed mass (circular velocity) func-

tion of substructure within the Virgo Cluster of galaxies com-
pared with our simulation results. The circular velocities of
substructure halos are measured directly from the simulation,
while for the Virgo Cluster, we invert the Binggeli et al. lu-

Figure 3.3: Left panel: A density plot of the high resolution Milky Way mass-like dark
matter halo, revealing hundreds of resolved sub-halos. Right panel: Cumulative numbers
of the Milky Way substructure, the Virgo Cluster substructure and the simulated model
substructure, with the same mass scale for comparison (Moore et al. 1999).

3.3 CDM Substructure Problem

3.3.1 Missing Satellite Problem

Numerical simulations of dark matter halos, which are pure N -body simulations,
are in excellent agreement with observations on cluster scales. The simulations
predict lots of substructure that can be matched to the cluster galaxies. But due
to the nearly scale-free nature of structure formation in the ΛCDM framework,
galaxy size dark matter halos also reveal hundreds of sub-halos (see left panel
of Fig.: 3.3). There are two discrepancies in this prediction. Firstly, the observed
number of satellites around the MilkyWay or Andromeda is much smaller than that
predicted by numerical dark matter only simulations (Moore et al. 1999; Klypin et al.
1999; Diemand et al. 2008). Secondly, ΛCDM predicts a scale-free or self-similar
mass function for the substructure in dark matter halos of different masses, while
observed luminosity functions are strongly mass dependent (see right panel of
Fig.: 3.3). These discrepancies result in the so-called Missing Satellite Problem. This
problemmanifests itself in darkmatter only simulations that do not include baryonic
physics. Several possible methods have been proposed to solve this problem. For
example, inclusion of baryonic physics in the simulations could alleviate theMissing
Satellite Problem (Bullock et al. 2000; Macciò 2010).
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22 3 High Resolution Simulation

3.3.2 Suppression of Structure formation on small scales

The substructure problem associated with CDM can be alleviated either by the
inclusion of baryonic physics in the simulations or by introducing alternative
particles, in the form of so-called warm dark matter (WDM). The particles of this
species are much lighter (several keV) than the cold dark matter particles and
therefore have non-negligible velocity dispersion. Hence they are able to escape
from primordial small potential wells and thus wash out density perturbations.
This leads to a suppression of the power spectrum on small scales and the number
of sub halos is reduced compared to CDM (Colín et al. 2000; Schneider et al. 2012;
Lovell et al. 2012; Anderhalden et al. 2012).
Another potential solution to the substructure problem is the suppression of

star formation in lower mass dark matter halos. There have been two possible
solutions of this kind suggested. Firstly, in low mass halos, supernova feedback can
cause the ejection of cold gas (Dekel and Silk 1986; Klypin et al. 1999), preventing
these halos from forming luminous dwarf galaxies. Secondly, the ionizing radiation
field after reionization keeps the gas from cooling into low mass halos, preventing
star formation in low mass environments (Rees 1986; Thoul and Weinberg 1996).
The heating of the ionizing background provides additional pressure and keeps
the gas from falling into these small halos and can even evaporate existing viri-
alized objects (Barkana and Loeb 1999). These solutions assume the underlying
substructure of ΛCDM to be correct, and therefore predict lots of dark or ultra faint
satellites, because for the supernova feedback mechanism at least some amount of
star formation must have occurred. Through the inclusion of baryonic physics, it
can be shown that galaxy formation is strongly suppressed in dark matter halos
below 3 · 109 M� (Sawala et al. 2014).

3.3.3 Cusp-Core Problem

Another discrepancy between observations and the predictions from dark matter
only simulations on small scales is the so called Cusp-Core Problem. It describes
the difference between observed density profiles in dwarf galaxies and the ones
in simulated dark matter halos of same mass scale. Dwarf galaxy density profiles
possess a core, whereas dark matter only simulations predict the dark matter density
profile to be well described by a universal cuspy profile (NFW profile, Navarro
et al. (1997); Moore (1994); Diemand et al. (2005); Macciò et al. (2012a)). As in the
case of the Missing Satellite Problem, the inclusion of baryonic physics might be
a solution to this problem. Baryons are subject to many more interactions than
dark matter particles, which leads to much greater variation in the baryonic density
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3.3 CDM Substructure Problem 23

profile, due to responses to feedback processes, such as gas outflows after star
formation or heating due to AGN feedback. The gravitational interaction of dark
matter and baryons is then able to alter the density profile of the underlying dark
matter distribution and leads to a cored profile (Flores and Primack 1994; de Blok
and Bosma 2002; Mashchenko et al. 2008; Governato et al. 2012; Macciò et al. 2012b).

3.3.4 Observational detection biases
The substructure problem is not just a result of incorrect theoretical descriptions,
but is also partly induced by the incompleteness and biases in observations of dwarf
galaxies in the local group due to detection limits. Besides theoretical issues, the
Missing Satellite Problem can be at least partly interpreted as a consequence of
incomplete dwarf galaxy samples due to the following observational problems (see
Bullock (2010) and also references therein):

Surface Brightness Limits : Most of the known dwarf galaxies have very low
surface brightnesses, which lie close to the current detection limits. Therefore
one expects further dwarf galaxies to easily fall below the threshold of current
surveys, leading to the non-detection of a significant number of satellites.

Sky Coverage : The current dwarf galaxy surveys are incomplete. They only
include ∼20% of the total sky, which then leads to the conclusion that up to
five times more satellites might be discovered if the whole sky were observed.
If the dwarf galaxy populations were evenly distributed around the Milky
Way or Andromeda, this bias could be accounted for. But as Pawlowski and
Kroupa (2014) and Ibata et al. (2013) claimed, the satellite distribution around
the Milky Way and Andromeda might be highly anisotropic. This makes an
estimation of the sky coverage bias very difficult (see e.g. Fig.: 4.2).

Luminosity Bias : Observations are naturally limited by luminosity, and it is
relatively easy to obtain the luminosity limit of a survey. But since dwarf
galaxies are also distributed radially around a galaxy with unknown distance
from the host, it is difficult to estimate a correction factor for this bias. Future
deeper surveys are required to account for this bias (but see Koposov et al.
(2008)).
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4 Observations and halo selection

Since 1976, when Lynden-Bell (1976) first proposed that Milky Way satellites lie
in a plane, a great deal of progress has been made. Further satellites around the
Milky Way and especially around its companion Andromeda (M31) have been
found (Koch and Grebel 2006; McConnachie and Irwin 2006; Metz et al. 2008; Ibata
et al. 2013; Conn et al. 2013). With accurate sky surveys like the Sloan Digital Sky
Survey (Abazajian et al. 2009, SDSS) or the Pan-Andromeda Archaeological Survey
(McConnachie et al. 2009, PAndAS), many new members could be assigned to the
‘plane of satellites’ and their kinematics could be investigated. The analysis of these
kinematics recently revealed that among the 27 satellites found around Andromeda
in the PAndAS survey, 15 lie within a thin plane of (12.6± 0.6) kpc (Ibata et al.
2013; Conn et al. 2013). Furthermore, Ibata et al. (2013) estimated from line-of-sight
velocity measurements that 13 out of the 15 satellites in the plane seem to co-rotate.
This kind of spatial and kinematic alignment is not easily found in Cold Dark Matter
simulations, and raised the question once again of whether Cold Dark Matter is
the correct cosmological model (Kroupa et al. 2005, 2012; Pawlowski et al. 2014;
Ibata et al. 2014). In this chapter, recent observations of satellite planes around
Andromeda and the Milky Way are presented, the detection methods for the M31
plane are discussed, and the main halo selection as well as the methodology used
to find planes of sub-halos in the simulations are introduced.

4.1 Observed Planes of Satellites
The detection methods of planes of satellite galaxies around our own Galaxy and
aroundAndromeda are totally different in nature. While we can observeAndromeda
from the outside, nearly edge-on, our position in the MilkyWay makes it impossible
to get such a view of our own Galaxy. The detectable planes are therefore also very
different in nature. The plane of satellites around Andromeda is seen nearly edge
on, and line-of-sight velocity information for the motion in the plane can thus be
obtained. Additionally, distance information is available to calculate the relative
distances of the satellites to Andromeda and get a three-dimensional picture of
the plane. For the Milky Way, such information is not always available, and only
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26 4 Observations and halo selection

proper motion measurements (for only some of the satellites), positions on the
sky and distances can be obtained. From these values, the plane can be found by
the clustering of angular momentum vectors around the orbital pole of the plane
(compare Fig.: 4.1). A detailed view on the distribution of satellites around the
Milky Way and Andromeda will be given below.

4.1.1 Milky Way
The Milky Way plane is much harder to define than the plane around Andromeda.
So far, 27 satellites of our own Galaxy are known (Pawlowski and Kroupa 2014),
and for 11 of them, proper motion measurements are available. For 8 out of these
11 satellites, Pawlowski et al. (2013) were able to obtain an average orbital pole
leading to a plane of thickness (rms value) 19.6 kpc and a parallel root-mean-square
extension of 129.5 kpc (Pawlowski et al. 2014). They find that at least 6 orbital
poles are closely aligned with the average orbital pole, and thus the satellites seem
to co-rotate the Milky Way on a similar orbit. However, considering the context
of the availability of data (with proper motion values available for 11 out of 27
satellites) and the fact that only 6 out of the 27 satellites seem to align spatially and
kinematically, this is a weak statement. But nevertheless, the orbital poles seem to
align with some of the known stellar streams around the Milky Way (Pawlowski
et al. 2013). Furthermore, more and more planes of satellites are being discovered
around other galaxies.

4.1.2 Andromeda - M31
In the case of Andromeda, it is much easier to find the plane of satellites and
to determine its characteristics. Ibata et al. (2013) analysed 27 satellites in the
Pan-Andromeda Archaeological Survey (McConnachie et al. 2009, PAndAS) and
found that 15 of the 27 satellites lay in a thin plane of thickness (12.6± 0.6) kpc
(Ibata et al. 2013; Conn et al. 2013). Furthermore, using line-of-sight velocities,
they reported that 13 of the satellites in the plane co-rotate. The fact that all of the
distances were obtained from the same survey makes the distance and thickness
estimates more reliable. Additionally, the view of the galaxy from the outside
makes it much easier to identify the planar structure. Moreover Ibata et al. (2013)
excluded nine known satellites (two that lie inside the PAndAS field, and seven that
lie outside, see Fig.: 4.2, left panel), either because they are too close to Andromeda’s
disk or because they are not part of the survey area of PAndAS. Four clearly lie
outside the plane and do not contribute to it. Five of them, however, are located
such that they may belong to the plane. Since these satellites were not included
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4.1 Observed Planes of Satellites 276 Pawlowski & Kroupa

Figure 1. All-sky plot of the orbital poles of the MW satellite galaxies (green dots) in Galactic longitude l and Galactic latitude b in
an Aitoff projection. The orbital poles are also listed in Table 2 and were derived from the satellite galaxy positions, velocities and PMs
compiled in Table 1. The 1σ uncertainties of the orbital pole directions resulting from the PM uncertainties are indicated by the green
great-circle segments. The average direction of the eight most concentrated orbital poles is indicated by the dark green circle with central
cross at (l, b) = (176◦.4,−15◦.0), the surrounding solid green circle has the size of the spherical standard distance (∆sph = 29◦.3) of the
eight contributing poles around this direction. The magenta square gives the direction of the normal vector to the plane fitted to the
positions of the 11 brightest satellite galaxies, which all contribute an orbital pole to this plot. The blue diamond indicates the direction
of the normal to the plane fitted to all YH GCs (Pawlowski et al. 2012). The red hexagon shows the average direction of the normal
vectors to all 14 streams in the MW halo analysed in Pawlowski et al. (2012), the dashed red circle has a size of their spherical standard
distance of ∆sph = 46◦ and the small filled hexagon indicates the normal direction to the Magellanic Stream. The small filled square
denotes the normal direction to the VPOS-3, the plane fitted to the positions of all MW satellites with the exception of three outliers
(Pawlowski et al. 2013). It will be used for the prediction of the MW satellite PMs. The plane normal directions, the average stream
normal and the majority of the orbital poles are all concentrated in the centre of the plot. Most objects in the VPOS are therefore also
co-orbiting within this polar structure, Sculptor is on a retrograde orbit within the VPOS. The LMC orbital pole and the Magellanic
Stream normal appear to define the centre of the distribution.

lite galaxies therefore orbit around the MW in a common
direction and almost in the same orbital plane. Within their
considerable uncertainties, the orbital poles of Sextans and
Carina come close to this common direction, too. This pre-
ferred direction is close to the normal direction of the clas-
sical VPOS. The orbital poles of most MW satellites align

with the short axis of the satellite distribution. The satel-

lites co-orbit in the plane defined by their positions. There-

fore the satellites will remain close to the VPOS plane, such

that this spatial structure is rotationally stabilized and not

a transient feature. The majority of orbital poles are also
close to the average stream normal, which also indicates a
preferred alignment of the orbits of satellite objects in the
MW halo with the planar structure consisting of satellite
galaxies and YH GCs.

The orbital pole of Sculptor is offset by about 180◦ from
the direction preferred by the other satellites, so Sculptor ap-
pears to be counter-orbiting within the same orbital plane,
as has already been noticed by Metz et al. (2008). In their
search for possible streams of satellite galaxies and GCs,

Lynden-Bell & Lynden-Bell (1995) point out that Sculptor
lies very close to the plane of the Magellanic Stream and
that it is therefore probably associated with the stream.
Based on this association and several assumptions, includ-
ing that all objects in a stream have the same specific an-
gular momentum in both absolute value and direction, they
predict Sculptor’s PM to be µα cos δ = 0.5 mas yr−1 and
µδ = −0.8 mas yr−1. This PM would result in an alignment
of Sculptor’s orbital pole with our average orbital pole direc-
tion, but unfortunately the published PMs of Sculptor are
clearly offset from this prediction. In particular, the least
uncertain measurement based on HST data by Piatek et al.
(2006), which dominates our uncertainty-weighted average,
differs from this prediction by approximately 3σ in µα cos δ
and 6σ in µδ. A significant revision of the observed PM
for Sculptor appears unlikely, but this possibility cannot be
completely ruled out at the moment given the generally very
uncertain nature of PM data and the wide scatter among
different measurements. However, the assumption that all
members of a common stream co-orbit in the same sense is

c⃝ 2013 RAS, MNRAS 000, 1–17

Figure 4.1: An all-sky plot of the orbital poles of the MW satellite galaxies (green dots)
in Galactic longitude l and Galactic latitude b in an Aitoff projection. The measurement
uncertainties of the orbital pole directions are indicated by the green great-circle segments.
The average direction of the eight most concentrated orbital poles is indicated by the dark
green circle with a central cross at (l,b) = (176.4◦,−15.0◦), and the surrounding solid green
circle is the size of the spherical standard distance (∆sph = 29.3◦) of the eight contributing
poles around this direction. The magenta square gives the direction of the normal vector
to the plane fitted to the positions of the 11 brightest satellite galaxies. The blue diamond
indicates the direction of the normal to the plane fitted to all Globular Clusters. The red
hexagon shows the average direction of the normal vectors to all 14 streams in the MW
halo analyzed for this plot, the dashed red circle is the size of their spherical standard
distances of ∆sph = 46◦ and the small filled hexagon indicates the normal direction to
the Magellanic Stream. The small filled square denotes the normal direction to the plane
fitted to the positions of all MW satellites with the exception of three outliers. The plane
normal directions, the average stream normal and the majority of the orbital poles are all
concentrated in the centre of the plot, indicating co-orbiting structures, with one satellite
on a retrograde orbit (Pawlowski et al. 2013).

in previous analysis we stick to the values calculated by Ibata et al. (2013), but
keep in mind that these satellites will alter the root-mean-square thickness and
the extension of the plane, as well as the ratio of satellites in the plane to those
satellites outside of the plane and the fraction of co-rotating satellites. A visual
impression of the plane as it was observed by Ibata et al. (2013) is shown in the
left panel of Fig.: 4.2. The blue dots represent satellites outside of the plane while
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28 4 Observations and halo selection
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Figure 1: Map of the Andromeda satellite system. The homogenous PAndAS survey (irregular 

polygon) provides the source catalogue for the detections and distance measurements of the 27 

satellite galaxies20  (filled circles) used in this study.  Near M31 (ellipse), the high background 

hampers the detection of new satellites and precludes reliable distance measurements for M32 and 

NGC 205 (black open circles); we therefore exclude the region inside 2◦.5 (dashed circle) from the 

analysis. The seven satellites known outside the PandAS area (green circles/arrows) constitute a 

heterogenous sample, discovered in various surveys with non-uniform spatial coverage, and their 

distances are not measured in the same homogenous way. Since a reliable spatial analysis requires 

a dataset with homogenous selection criteria, we do not include these objects in the sample either. 

The analysis shows that satellites marked red are confined to a highly planar structure. Note that 

this structure is approximately perpendicular to lines of constant Galactic latitude, so it is therefore 

aligned approximately perpendicular to the Milky Way’s disk (the grid squares are 4◦  × 4◦). 

2 Ibata et al.

Figure 1. Real and simulated alignments. Panel (a) shows the sky positions of the real sample of 15 satellite galaxies of M31 that display
a planar alignment. (For objects at a distance of 780 kpc, the top and right margins show the corresponding length scale, and dashed
circles mark 50, 100 and 150 kpc). The irregular polygon marks the outer limit of the Pan-Andromeda Archaeological Survey (PAndAS)
(McConnachie et al. 2009), while the inner (continuous) circle marks a 2�.5 region that was masked out by Ibata et al. (2013) to avoid
incompleteness due to high stellar density. The side-on view in (b) shows the most likely positions of the satellites (Conn et al. 2012). The
line of sight velocities of the satellites from Collins et al. (2013) are also displayed (a velocity of 1 km s�1 has length 1 kpc); the red arrows
mark objects that share the same sense of rotation. The small dots in panels (c) and (d) show, respectively, the same information as in
(a) and (b), but for all the satellites extracted from the Millennium-II simulation. In (d) we also overlay (large symbols) one of the two
satellite systems that was more extreme than the observed M31 system. The green circle marks the position of the most massive sub-halo
in that system, whose baryonic mass (1.8⇥ 1010 M�) significantly exceeds that of any satellite in the Local Group.

arising in approximately 2% of the halos they investi-
gated. The aim of the present paper is to examine the
validity of the BB14 analysis, and to extend our earlier
analysis to make better use of the accurate kinematic in-
formation available for the real satellites. In Section 2,
we discuss how the samples were selected from the sim-
ulation. Section 3 presents the analysis and results, and
conclusions are drawn in Section 4.

2. SAMPLE SELECTION

We select sub-halos from the Millennium-II simulation,
using the Guo et al. (2013) catalog which was scaled to
the WMAP year 7 analysis. The semi-analytic recipes
that were applied to the dark matter simulation provide
a wealth of predicted physical properties for galaxies that
reside within the dark matter halos.
Since we are interested in selecting systems similar to

M31, we follow BB14 and pick all halos in the redshift
z = 0 snapshot that have virial masses between 1.1⇥1012

and 1.7 ⇥ 1012 M�, mass-weighted age < 10Gyr, and
whose neighbors within 500 kpc have a baryonic com-
ponent less massive than 7 ⇥ 1010 M�. (We define the
baryonic mass to be the sum of the stellar and cold gas
components). A total of 1141 such hosts are found. In
addition to those BB14 selection criteria, we apply the
following three criteria to select hosts that are reasonably
similar to M31. We require that the hosts have baryonic
masses in the range 2–20 ⇥ 1010 M� (this leaves 1024
galaxies), and we require that the group that the host
galaxy resides in should have mass < 1.02 ⇥ 1013 M�, a
95% upper limit to the mass of the Local Group (Li &
White 2008) (leaving 885 galaxies). To ensure that the
M31 analog, as in reality, is the dominant galaxy within
the survey region, we finally reject hosts that have a com-
panion within 500 kpc that possesses > 1/3 of their bary-
onic mass. These cuts yield a sample of 679 host galaxies
within the Millennium-II simulation.

Figure 4.2: Left panel: Satellites as observed in the PAndAS field of view around Andromeda
(Ibata et al. 2013), red satellites are in the plane, blue satellites are outside of the plane.
Arrows indicate further known satellites that are not in the PAndAS field. Right panel:
The plane as observed around Andromeda by Ibata et al. (2014) with blue dashed circles
showing distances of 50, 100 and 150 kpc from the center of Andromeda. The irregularly
shaped region in both panels represents the PAndAS survey area.

red ones show the satellites in the plane. A visual impression of the extension
of the plane is shown in the right panel of Figure 4.2 with blue dashed circles
indicating distances of 50, 100 and 150 kpc from the center of Andromeda. The
selection of 15 satellites used to make up the plane is somewhat arbitrary and was
chosen because this number minimizes the root-mean-square thickness of the plane.
After specifying the plane and its constituents, the kinematics were investigated,
revealing kinematical coherence. A detailed description of the selection process
can be found in Conn et al. (2013).

4.2 Main Halo Selection

The dark matter halos re-simulated in this thesis were selected from four cos-
mological boxes of side length 30, 45, 60 and 80 h−1M� from Dutton and Macciò
(2014), who used cosmological parameters from the Planck Collaboration (2014):
Ωm = 0.3175, h = 0.671, σ8 = 0.8344, n = 0.9624. From these boxes, Andromeda-
like mass halos (5 × 1011 < M200/[h−1M�] < 1.5 × 1012) were selected, where
the halo mass was defined with respect to 200 times the critical density of the
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Figure 4.3: Left panel: The concentration mass relation. This diagram shows the concentra-
tion as a function of mass of the high resolution halos. The solid line is the average relation
from Dutton and Macciò (2014). The dashed line indicates the 1σ scatter of this relation.
Colour coding shows the division of the halos into high, average and low concentration.
Right panel: Mass growth vs. concentration. The plot shows the concentration at z = 0 as
a function of mass at z = 2 in terms of the present day mass. Rapidly growing halos (late
forming) are located on the left, while slowly growing halos (early forming) are located
on the right. The color coding shows the division of the halos into high, average and low
concentrations. The halos with satellite planes coming closest to the values of Andromeda
are marked by black circles. The dotted one is halo A, the dashed one is halo B and the solid
circle marks halo C.

universe. Aside from halo mass, the only other selection criteria for the objects
was the concentration, which is a proxy for halo formation time (Wechsler et al.
2002). The right panel of Figure 4.3 shows the concentration at z = 0 as a function
of the mass growth since z = 2. The clear correlation validates the approach of
using the concentration as a first proxy for the halo formation time.

The reasoning behind such a choice is that, at a fixed mass at the present time,
early forming halos are more likely to form at the nodes of intersections of a few
filaments of the cosmic web, while typical halos tend to reside inside such filaments
(Dekel et al. 2009). One then might expect that, rarely, early forming halos would
accrete satellites from a few streams that are narrow compared to the halo size,
while typical halos accrete satellites from a wide angle in a practically spherical
pattern.

In the left panel of Figure 4.3 the concentration-mass relation of the high resolu-
tion halos is shown. Here the concentration is defined as c200 = R200/r−2, where
R200 is the virial radius, and r−2 is the radius where the logarithmic slope of the
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Figure 4.4: Left panel: The present day cumulative mass function of the 30 most massive
satellites at the infall time for every host halo in the sample. The differences in masses
between the high and low concentration halos show the effect of stripping due to the
earlier accretion of satellites in high concentration halos. Right panel: The present day
cumulative radial distribution of the 30 most massive satellites at the infall time for every
host halo in the sample. The yellow line indicates the cumulative radial distribution of the
satellites around Andromeda (assumed Rvir = 250 kpc). The shaded yellow area marks
the measurement uncertainty by using the maximal and minimal radius of every satellites
respectively. The green lines indicate the two Andromeda analogues from Gillet et al. (2015).

density profile is −2. A roughly equal number of high (red points), average (black
points) and low (blue points) concentration halos (see Figure 4.3) was selected.
The solid line is the power law fit from Dutton and Macciò (2014), while the

dashed ones show the 1σ intrinsic scatter of 0.11 dex around the mean. The high
concentration halos have on average an offset of about 2σ from the mean relation.
This means these halos are the rarest 2.3% of the whole population. For a random
sample of halos, it would thus require ∼ 40 simulations to recover such rare halos.
This helps to explain why previous high resolution simulations were unable to re-
produce the observed properties of the satellite distribution around the Andromeda
galaxy: they simply did not sample enough halos to find the rarer earliest forming
ones.

4.3 Satellite Selection
These high resolution simulations reveal hundreds of resolved sub-halos (compare
Figure 5.1), which have to bematched to actual luminous galaxies. Galaxy formation
models robustly predict the luminous sub-halos to be the ones that are most massive
at the infall times (Kravtsov et al. 2004; Conroy et al. 2006; Vale and Ostriker 2006).
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Thus, a sample of the 30 most massive subhalos at the time of accretion was chosen,
where the analysis was restricted to subhalos within the virial radius of the host
halo (∼ 200 kpc).
Although observations around Andromeda use a special selection function given

by the peculiarities of the Pan-Andromeda Archaeological Survey (McConnachie
et al. 2009, PAndAS), for this thesis it was decided not to reproduce the selection
function for a number of reasons. Firstly, it requires surface-brightness information
that is not available in these (dark matter only) simulations. Secondly, the PAndAS
footprint is unique to the Andromeda galaxy, being non-circular, and including
a region around its most massive satellite M33. Thus it would not make sense
to apply the same footprint to a cosmological simulation. Thirdly, the spatial
depth of the survey is somewhat uncertain due to the difficulties in measuring
accurate distances to the satellites. Rather, in this thesis simple, reproduceable, and
physically motivated selection criteria are chosen. As the satellite population of
the most massive sub-halos (at the infall time) are within the z = 0 virial radius,
Rvir is chosen. Choosing satellites within the virial radius leads to a bigger volume
(≈ R3

vir) compared to the observations and hence a total of 30 satellites instead of
27 are used. Furthermore, there is some arbitrariness in the number of satellites
related to Andromeda. As mentioned before, nine known satellites (two that lie
inside the PAndAS field, and seven that lie outside) were not considered by Ibata
et al. (2013). Nevertheless, for this thesis, different sample sizes of 25, 27 and 30
satellites were tested and no major differences in the plane statistics were found.
Therefore, only the results for samples consisting of 30 satellites will be discussed.
Figure 4.4 shows the present day cumulative mass function (left panel) and the

cumulative radial distribution (right panel) of the 21 satellite samples together with
the observations plotted in yellow. Selection of the 30 most massive satellites at
the infall time results in present day satellite samples with masses in the range
(3 × 107 < M200/[h

−1M�] < 1 × 1010). The separation in the cumulative mass
function between the satellite samples of main halos with different concentrations,
shown in the left panel of Figure 4.4, with high concentration satellites showing
lower masses, is a result of stripping. High concentration halos accrete their satellite
samples at earlier times than low concentration halos, which leads to satellites
being more stripped in high concentration halos than in low concentration halos.
The cumulative radial distribution of satellite samples (right panel of Figure 4.4)

reveals that the selection of the 30 most massive satellites at infall time results in
satellite samples occupying radii between (0.2 < R/Rvir < 1) in good agreement
with the observed radial distribution of satellites around Andromeda (shown in
yellow). There is no indication that high concentration halos have a different
radial distribution, namely a more concentrated distribution of satellites than low
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32 4 Observations and halo selection

concentration halos or observed satellites (compare right panel of Figure 5.2). Figure
5.2 shows the observed radial distribution of the 27 satellites around Andromeda
with a yellow line. The yellow shaded area marks a nominal uncertainty range
calculated by taking the maximum and minimum radius for every satellite given
by its measurement uncertainties. For Andromeda a virial radius of Rvir = 250 kpc
was assumed. Inclusion of two satellites at radii of about r ∼ 400 kpc into the
observational sample leads to the fact that the cumulative radial distribution is not
equal to unity at R/Rvir = 1. In green the radial distribution of the 25 satellites
of the two Andromeda analogues from Gillet et al. (2015) are shown. The radial
distribution of their satellite sample is, although only 25 satellites are considered,
comparable to the sample of this work. Interestingly one of their simulation is a
bit more concentrated than the the ones done for this work, while the other is far
more extended by inclusion of satellites far beyond the virial radius.

4.4 Plane detection and analysis
In this section, the plane finding algorithm used for this work and the measured
variables will be described. The plane finding algorithm works by invoking random
planes defined by their normal vector. All planes include the center of the main halo.
To uniformly cover the whole sphere, 100,000 random planes are generated with a
fixed thickness of 2∆ = 30 kpc h−1, where only half of the sphere actually has to
be considered, since plane normal vectors are symmetric. After specifying a plane,
the distance of every satellite to this plane is calculated. A satellite is considered to
lie in the plane if its distance to the plane is smaller than ∆. For each plane, the
number of satellites in the plane, its root-mean-square thickness ∆rms and its radial
extension is calculated. Then, for every number of satellites in the plane, the one
that is thinnest and richest is chosen to be analyzed for the kinematics (further
details on the plane finding algorithm can also be found in Gillet et al. (2015); Ibata
et al. (2014); Conn et al. (2013)). For these planes, the line-of-sight velocity of the
satellites in the plane in edge-on view is calculated, and that information is used to
infer the number of co-rotating satellites.
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5 Results
This chapter contains the analysis of the planes of satellites found in the 21 high-
resolution “zoom-in” dark matter only simulations. The simulations were intended
to resolve a sufficient number of subhalos to make planes of satellites identifiable.
The main halos for re-simulation were selected from large-volume simulations run
by Dutton and Macciò (2014), in such a way that an almost equal number of high,
average and low concentration halos were chosen (for details see 3 and 4.2).
The substructure within a high-resolution region was identified using the Amiga

Halo Finder (Knollmann and Knebe 2009, AHF), which is capable of finding subhalos
as well as dealing with different particle masses. At z = 0, a plane finding algorithm
(as described in section 4.4) was applied to the 30 most massive satellites at the
infall time, with the goal of identifying planes of satellites similar to the observed
ones. The kinematics of the simulated planes of satellites were investigated and
compared to those of the observed satellite planes. As a further step, the formation
scenario of the planes was analysed.
One particularly interesting feature is the visual impression of the planes found

in the simulations. The upper left panel of Figure 5.1 shows a density plot of the
halo coming closest to the parameters observed for Andromeda

Simulation : Nin = 15, Ncorot = 13, ∆rms = 12.9 kpc
Andromeda : Nin = 15, Ncorot = 13, ∆rms = (12.6± 0.6) kpc

(5.1)

The upper right panel shows the same plot, but it now indicates all 30 of the most
massive satellites at the infall time used for the plane finding algorithm with black
circles. The lower left panel shows the satellites in the plane as green circles and
the ones outside of the plane again as black circles. Finally, the lower right panel
shows the kinematics of the plane by color-coding the sign of the line-of-sight
velocity with red and blue.

In this section, all of the simulations will be investigated for such planes, and the
dependence of plane parameters (like the number of satellites in the plane or the
plane thickness) on the concentration of the main halo will be shown. In a second
step, a detailed kinematic analysis of the planes will be performed, including an
investigation of the co-rotation fraction, the lifetime of the plane and the dependence
of the appearance of the plane on the viewing angle.
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Figure 5.1: A density plot of the plane of satellites with values closest to those of An-
dromeda. Upper left panel: A density plot of the halo, showing hundreds of resolved
satellites. Upper right panel: A density plot of the same halo, indicating the 30 most massive
satellites at the infall time with black circles. Lower left panel: Here the plane is highlighted
by showing satellites in the plane as green circles and satellites outside of the plane with
black circles. Lower right panel: Here the kinematics of the plane are shown by the color-
coding of the directions of the line-of-sight velocities of satellites in the plane as red and
blue dots.
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Figure 5.2: The minimal root-mean-square thickness, min. ∆rms, of planes as a function
of the number of satellites in the plane. Each line represents a different dark matter halo.
Red lines show high concentration halos, blue lines show low concentration halos and
black lines show average concentration halos. The thinnest planes occur in the highest
concentration halos. The blue dot shows the rms value of the plane of satellites observed
around Andromeda (Ibata et al. 2013; Conn et al. 2013). The grey area represents a nominal
uncertainty in the number of satellites in the plane around Andromeda of ±1.

5.1 Dependence of plane parameters on halo
concentration

As the first step in analysing the planes of satellites generated in these high-
resolution simulations, the dependence of the plane parameters on the concen-
tration of the main halo was investigated. For this purpose, correlations of the
plane thickness, the number of satellites in the plane and the number of co-rotating
satellites with the concentration (as a proxy for the formation time) of the host
were investigated.
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Figure 5.3: The minimal root-mean-square thicknesses parallel and perpendicular to the
richest planes found, color-coded by halo concentration. The values from Andromeda are
indicated by the blue triangle and the blue star, with the dashed blue lines indicating the
measurement uncertainty of the perpendicular rms value of (12.6± 0.6) kpc. The solid
blue lines and the blue star show the values calculated by Ibata et al. (2013). The dotted
blue lines together with the blue triangle show an estimate of the parallel rms value given
by (Pawlowski and Kroupa 2014), while the values obtained by Gillet et al. (2015) for their
two Andromeda analogues are plotted in green and purple respectively. The halos with
satellite planes with the closest number of members to that of Andromeda (15 satellites in
the plane) are marked with black circles. The dotted one is halo A, the dashed one is halo B
and the solid circle marks halo C.

5.1.1 Plane thickness vs halo concentration

To analyse the dependence of plane thickness on the concentration of the main
halo and hence on the formation time of the host, the minimum root-mean-square
thickness of the plane, ∆rms, for every given number of satellites in the plane was
calculated. ∆rms is the the root-mean-square value of the distance of the satellites
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Figure 5.4: The projected 2 dimensional root-mean-square thickness parallel and per-
pendicular to the richest plane found, color coded by halo concentration. The value for
Andromeda is indicated by the blue star where the dashed blue lines indicate the measure-
ment uncertainties, for the perpendicular rms value this is given by (12.6± 0.6) kpc (Ibata
et al. 2013) and for the parallel one the uncertainty is given by calculating the projected
rms value with the upper and lower limit of the radius of each satellite. The error bars
of the simulated satellite planes indicate the range of possible values if different viewing
angles for the projection of the edge-on plane are chosen. The halos with satellite planes
coming closest in number of members to the values of Andromeda (15 satellites in plane)
are marked by black circles. The dotted one is halo A, the dashed one is halo B and the solid
circle marks halo C.

perpendicular to the plane. Figure 5.2 shows the plane thicknesses as a function
of the number of satellites in the plane, with lines color-coded according to the
halo concentration. There is a clear dependence of the plane thickness on the
concentration of the halo. The thinnest planes are only found to be associated with
the highest concentration (red lines) halos, and hence the earliest forming halos.
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Figure 5.5: The projected 2-dimensional root-mean-square thickness parallel to the richest
plane found as a function of halo concentration. The value for Andromeda is indicated
by the blue line where the dashed blue lines indicate the uncertainty from calculating the
projected rms value with the upper and lower limit of the radius of each satellite. The
error bars of the simulated satellite planes indicate the range of possible values if different
viewing angles for the projection of the edge-on plane are chosen. The grey line together
with the dashed grey line shows the mean value and the possible range of values for the
projected 2-dimensional rms value parallel to the plane if different viewing angles for the
projections are used partially respecting the spatial selection function of the PandAS by
excluding satellites with projected radius greater than 160 kpc. The halos with satellite
planes coming closest in number of members to the values of Andromeda (15 satellites
in plane) are marked by black circles. The dotted one is the halo A, the dashed one is the
emphhalo B and the solid circle marks the halo C.

Furthermore, only high concentration halos have planes as thin as those observed in
Andromeda (assuming 15 members). The smooth relation between plane thickness
and the number of satellites in the plane suggests that there is an arbitrariness in
the number of satellites chosen to be in the plane. There is no clear evidence of two
distinct spatial structures, such as a planar and spherical distribution of satellites.
It is worth noting that an investigation of the satellite distribution does not reveal a
more concentrated satellite distribution in high concentration halos, which might
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trivially explain the dependence of plane thickness on the concentration that is
found (see also Figure 4.4). Selected subhalo samples of low and high concentration
halos show the same radial root-mean-square value. This can be seen from Figure
5.3 where a comparison of the root-mean-square thickness of the plane with its
parallel root-mean-square value, calculated as the rms of the radial distances to
the halo center as projected onto the plane, is shown. The corresponding value
for Andromeda is indicated by a blue solid line and a blue star with dashed lines
indicating the measurement uncertainty. The value estimated by Pawlowski and
Kroupa (2014) for the parallel rms of the Andromeda plane without the furthest
satellite AndXXVII (r > 400 kpc) is shown as a blue dotted line together with a blue
triangle to give an impression of the uncertainty of the parallel rms value. Values
for the Andromeda analogues of Gillet et al. (2015) are shown as green and purple
lines.
Our plane samples have comparable values to the planes found by Gillet et al.

(2015). This plot shows no dependence of the radial root-mean-square value on
concentration, but the dependence of perpendicular root-mean-square thickness
on concentration found in Figure 5.2 is confirmed. Only high concentration halos
show planes with the lowest root-mean-square thickness. One clearly sees that
these planes do not show the same high radial root-mean-square value as observed
around Andromeda. This is no major problem since the root-mean-square value
can be biased by outliers such as the satellite AndXXVII of Andromeda with radial
distance further away from the center of Andromeda than 400 kpc (larger than the
virial radius of Andromeda and the one of the simulated halos). The mean radius of
satellites around Andromeda is about 150 kpc. Therefore, and because it is the value
which is actually observed, it is better to compare the projected two-dimensional rms
value parallel to the plane in edge-on view. This was done in Figure 5.4 and Figure
5.5. Figure 5.4 shows the projected 2-dimensional root-mean-square thickness
parallel and perpendicular to the richest planes found. The values of planes for
individual halos are color-coded by halo concentration with high concentration
halos shown in red, average ones in black and low concentration halos in blue. The
value for the observed plane around Andromeda is indicated by the blue star with
dashed blue lines indicating the measurement uncertainties. For the perpendicular
rms value this is given by themeasurement uncertainties of∆rms = (12.6± 0.6) kpc
(Ibata et al. 2013) and for the parallel one the uncertainty is given by calculating the
projected rms value with the upper and lower bounds of the radius of each satellite
obtained from the measurement uncertainties of the radius. The error bars of the
simulated satellite planes indicate the range of possible values if different viewing
angles for the projection of the edge-on plane are chosen. In comparison to the radial
root-mean-square value obtained for the satellites in the plane shown in Figure 5.3
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the values for the projected planes are in better agreement with the observed value
and most of the high concentration halos are consistent with the observed value.
Furthermore when comparing the simulations to the observations one has to keep
in mind that for the observations the satellites with projected radius smaller than
34 kpc are removed. This selection biases the projected root-mean-square value of
the observations high compared to the simulations where this selection was not
applied for several reasons. The most important reasons is that if this selection
criteria was used for the simulations one would have to correct for every viewing
angle the number of the 30 most massive satellites since some would be excluded.
Instead of applying the same exclusion criteria for the simulations the observed
distribution of satellites was used to estimate the projected root-mean-square value
parallel to the plane if the viewing angle in edge-on view is alteredwithout excluding
satellites projected into the innermost 34 kpc. Since the observations also include
satellites obviously outside the virial radius a cut for a projected outermost radius
of 160 kpc adopted from the PAndAS footprint was set. The result of this analysis is
shown in Figure 5.5 where the projected 2-dimensional root-mean-square thickness
parallel to the plane as a function of halo concentration for the simulations is shown.
The grey line together with the dashed grey line shows the mean value and the
possible range of values for the projected 2-dimensional rms value parallel to the
plane if different viewing angles in edge-on view are used for the projections of
the observed satellite distribution excluding satellites with projected radius greater
than 160 kpc. For comparison the value observed for Andromeda is indicated by
the blue line with the dashed blue lines showing the uncertainty from calculating
the projected rms value with the upper and lower limits of the radius of each
satellite obtained from their measurement uncertainties. The observed value (blue
line) and the estimated mean value (grey line) by using different viewing angles
are in full agreement within their uncertainties. The error bars of the simulated
satellite planes again indicate the range of possible values if different viewing
angles for the projection of the edge-on plane are chosen. For this analysis the
simulations are in even better agreement with the observations although showing
a systematical bias to lower parallel rms values compared to the observations.
This could be due to several reasons, for example does a lower virial mass of the
simulations compared to the observations bias them low (see also subsection 5.4.2
for the impact of different definitions for dark matter halo border). Furthermore,
the observed satellite sample already suffers from a bias towards a more extended
satellite sample due to the PAndAS selection function. Nevertheless, given the huge
scatter in projected parallel root-mean-square thickness in the simulations, they
are in good agreement to both, the observed 2-dimensional rms value and the one
estimated by using different viewing angles.
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Figure 5.6: Left panel: The maximum number of satellites in the plane as a function of
the concentration. The color-coding divides the halos into high (red), average (black) and
low (blue) concentration halos. The blue line shows the value obtained with 15 satellites
in the plane for Andromeda. The halos with satellite planes coming closest to the values
of Andromeda are marked with black circles. The dotted one is halo A, the dashed one is
halo B and the solid circle marks halo C. Right panel: The maximum number of co-rotating
satellites vs. the number of satellites in the plane, color-coded by concentration. The blue
dot shows the observed values of Andromeda’s plane (15 satellites in the plane, with 13
co-rotating) with a grey shaded area indicating an uncertainty of ± 1 for a satellite in the
plane and ± 1 for a co-rotating satellite.

5.1.2 Number of satellites in plane vs. concentration

For a given number of satellites in a plane, the thickness correlates with the con-
centration of the main halo. But an interesting question is whether, for a given
maximum root-mean-square thickness, the number of satellites in the plane also
correlates with the concentration. This can be assessed by specifying a maximum
distance of the satellites from the plane of, for example, 22 kpc and searching for
the plane that contains the highest number of satellites. The left panel of Figure 5.6
shows the maximum number of satellites in a plane as a function of the concentra-
tion. The overall maximum number of satellites in a plane is about 12 to 13, with
just three high concentration halos reaching a satellite count in the plane as high
as that observed for Andromeda. Furthermore, there is no obvious correlation with
halo concentration. But by showing that high concentration halos have the same
number of satellites in their planes, this plot strengthens the conclusion drawn
from Figure 5.3, namely that high concentration halos have thinner planes. The
thinner planes in high concentration halos are not due to a more concentrated
satellite distribution nor to a lower number of satellites in the plane. Rather, high
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Figure 5.7:The number of co-rotating satellites vs. the number of satellites in the plane for
a selection of halos. The points are color coded by the rms thickness (∆rms) of each plane.
The square marks the values observed for Andromeda (15 in the plane, 13 co-rotating),
where the grey shaded area marks the uncertainty of ± 1 for a satellite in the plane and
± 1 for a co-rotating satellite. The dots show the values of different planes found per
simulated halo. The top row shows the high concentration halos, themiddle row the average
concentration halos and the bottom row the low concentration halos.
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5.1 Dependence of plane parameters on halo concentration 43

concentration (and thus earlier forming) halos produce genuine thin planes. As a
last remark, it might be mentioned that despite the weak dependence of the number
of satellites in a plane on the concentration, only high concentration halos seem
to produce planes consisting of 15 or more satellites, and thus as rich as the one
observed around Andromeda (shown as a blue solid line in Fig.: 5.6, left panel).
In order to investigate the co-rotating of the planes obtained from the plane

finding algorithm, for every possible number of satellites in the planes, Nin, the
number of co-rotating satellites, Ncorot, was calculated. For this purpose, the sign of
the line-of-sight velocity with an edge-on view is used as a proxy for the co-rotating.
The result is shown in the right panel of Figure 5.6. When calculating for every
possible value for the number of satellites in the plane, the maximum number of
co-rotating satellites shows that a fully rotating plane can be obtained for a wide
range of planes. Up to values of about 10 satellites in the plane, there are viewing
angles from which the plane looks like a fully rotating one (with 100% co-rotating).
Interestingly, there is only a slight correlation between the number of co-rotating
satellites and the halo concentration, and as was found before, there is no clear
dependence of the absolute number of satellites and the number of co-rotating
satellites on the halo concentration. There is quite wide scattering among halos
of the same concentration, but again, only high concentration halos exhibit the
highest numbers of satellites in their planes and the highest number of co-rotating
satellites.
To provide a better overview of the possible plane configurations, Figure 5.7 shows

the outcome of the plane finding algorithm for a selection of halos of different
concentrations with high concentration halos in the upper row, average ones in
the middle row and low concentration halos in the bottom row. For every value of
the number of satellites in the plane Nin, the plots show the number of co-rotating
satellites, Ncorot. Every dot in the plot represents a different plane. The points
are color-coded according to the thickness of the plane ∆rms. For all of the halos
one can find planes with up to about 10 members that have a 100% co-rotating
fraction. Furthermore, one can always find planes with no coherent kinematics (i.e.,
a co-rotating fraction of 50%). As would be expected, planes with more satellites
tend to be thicker. The thickness of the plane, to first order, is also independent of
the co-rotating fraction, except for at the highest values of co-rotating fractions.
Figure 5.7 is a remarkable plot summarizing the key parameters of the planes (Nin,

Ncorot and the thicknesses ∆rms), and it shows that there is some arbitrariness in
selecting the best plane. In particular, it shows that for a given number of satellites
in the plane, there is always a plane or viewing angle for which there is no kinematic
coherence (50% co-rotating). A more elaborate analysis of the kinematic coherence
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Figure 5.8:The probability density function of the number of satellites in a plane for planes
with∆rms < 22 kpc, color-coded by concentration. Red lines show high concentration halos,
black lines average concentration ones and blue lines show low concentration halos. The
solid black line shows the number of satellites in the plane around Andromeda (Nin = 15).

of the richest planes (with the highest number of satellites) will be given in section
5.3.

5.2 Significance of planes
Before investigating the planes in detail for their kinematic coherence, the signifi-
cance of the best planes returned by the algorithm should be investigated. The best
planes are defined as the richest and thinnest ones. The significance of a plane
is defined as the probability of finding a plane of a given number of satellites or
higher in a random distribution, P (N ≥ Nin), respecting the radial distribution
of the original sample. The probability of finding planes consisting of a given
number of satellites or higher in a random sample should be comparably low to be
a significant detection. For example, it is easier to include more satellites in a plane
if the satellite distribution is less extended and more flat than if it is a spherically
symmetric, widespread distribution. For this purpose, for each main halo, 10,000
random samples of the 30 most massive satellites at the infall time, respecting
their radial distribution, were generated. To this end, the satellite’s radii were kept
fixed and their spatial positions were randomised. The plane finding algorithm was
applied to these samples, and the number of rich planes with a given number of
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Figure 5.9: The significance of certain individual planes is also demonstrated in Figure 5.7.
This is the probability density function for obtaining a plane consisting ofNin satellites in a
random sample of satellites, respecting the original radial distribution. The top row shows
high concentration halos, the middle row average concentration halos and the bottom row
shows low concentration halos.
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satellites was recorded. This procedure was also utilised by Ibata et al. (2013) to
quantify the significance of the plane found around Andromeda and by Gillet et al.
(2015) to quantify the significance of planes in their simulations.

Counting the occurrence of planes for every given number of satellites in the
plane results in a probability density function for the number of satellites in the
plane. In this way, one is able to quantify for a given radial distribution of satellites
the significance of a plane fitted to them. A comparison of all of the probability
density functions obtained for the simulations is shown in Figure 5.8. Interestingly,
for all of the halos, the peak of the distribution is around ∼10 satellites in the
plane with a width of about ±1 satellite and a tail extending up to around 16 to
18 satellites. Comparable results were also found by Gillet et al. (2015) for their
simulations. This means that satellite planes consisting of up to 11 satellites are fully
consistent with a random occurrence. Only two high concentration halos show a
slightly more pronounced tail, revealing less significant planes if one assumes 15
satellites in a plane. All of the other halos, disregarding their concentration, show
very significant planes if 15 satellites are assumed. Looking at planes consisting of
only 12 satellites or less, as is the case for average and low concentration halos, the
significance drops drastically. The probability of finding such planes in a random
distribution is between 7 and 10%, making such planes comparable to random
occurrences, while the detection of planes consisting of 15 or more satellites, as in
high concentration halos, is very low.

A more detailed view and comparison between individual halos is given in
Figure 5.9. This plot shows the significance values of the same selection of halos
as shown in Figure 5.7. Once again, the upper row shows high concentration
halos, the middle row shows average concentration halos and the bottom row
shows low concentration ones. The blue solid line indicates a plane consisting of
15 satellites as observed around Andromeda. In the upper right corner of each
panel, the probability of finding a plane consisting 15 or more satellites is shown.
Despite halo A, all of the halos reveal planes which can not be easily found in
random distributions with probabilities lower than 0.1% (P (Nin > 15) < 0.1%).
But comparing the real number of satellites found in a plane for each halo (for most
planes less than 15 satellites) with its associated probability distribution reveals
that only the planes of high concentration halos are really significant. For other
halos, the significance drops significantly due to the lower number of satellites in
the plane.
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Figure 5.10: The distribution of plane parameters for a particular number of satellites
in the plane Nin and the rms value, ∆rms, of the associated plane. The top marginal
histogram shows the cumulation along the y-axis, and the right marginal histogram shows
the cumulation along the x-axis. The black line shows a value of 13 satellites in the plane.
The top row shows high concentration halos, the middle row average concentration halos
and the bottom row shows low concentration halos.
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5.2.1 Distribution of plane parameters
Besides discussing the significance values of the richest planes obtained from the
plane finding algorithm, it is interesting to do a more physical comparison of the
planes found in different halos. For this purpose, the distribution of values for the
number of satellites in the plane, Nin, and the root-mean-square thickness, ∆rms, as
obtained from the plane finding algorithm are shown. Despite assuming a random
distribution of satellites, this procedure reflects that satellite distributions are not
random in ΛCDM but that there are physical processes like, for example, accretion
via filaments, which shape the satellite distribution. In order to demonstrate the
distribution of plane parameters, 100,000 values for the number of satellites in a
plane and the corresponding root-mean-square value are recorded during the plane
fitting process. Figure 5.10 shows a scatter plot of the plane parameters obtained.
For every number of satellites in the plane, Nin, the root-mean-square value for the
plane thickness of the plane, ∆rms, is plotted. The histogram on the upper x-axis
shows the distribution of the number of satellites in the plane, disregarding the
thickness. On the right y-axis, a similar distribution for the root-mean-square
values of the planes, disregarding the number of satellites, is shown. The solid
blue line in the marginal plots shows a kernel density estimation of the probability
distribution function. The solid black line indicates a plane consisting of 13 satellites.
The overall structure of the panels of the plot is the same as in Figure 5.7 and Figure
5.9, with the upper row showing high concentration halos, the middle row showing
average concentration halos and the bottom row showing low concentration ones.
Figure 5.10 shows that there is a large diversity of planes. There is no such thing a

a uniquely defined plane. For a given number of satellites in the plane there exist a
variety of possible thicknesses. Therefore it is difficult to decide or to define which
of the planes should be taken as the best plane.

5.3 Kinematic analysis of planes

5.3.1 Plane appearance under different viewing angles
One peculiarity of the plane finding algorithm is that it does not specify a given
viewing direction, but rather takes 100,000 random planes and finds the best plane,
which is only thin and extended (and therefore detectable) with an edge-on view.
Once the plane is found, it is interesting to study how the appearance of this
particular plane evolves if one either rotates it in edge-on view around the normal
vector, focusing on the co-rotating measured via the line-of-sight velocity, or if
one rotates it around an axis perpendicular to the normal vector, investigating its
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thickening as the inclination angle rises. Both of these dependences are discussed
in this subsection.
Planes of satellites are easiest to find when viewed edge-on and impossible to

find when inclined. Figure 5.11 shows the appearance of the plane, particularly
its thickness, when rotating it from an edge-on view to a face-on view. The solid
blue and black lines show the rms value of the plane thickness when rotating
the plane around either of the two directions perpendicular to the plane normal.
As one expects, the plane thickness basically mimics the behaviour of a solid
body plane when rotating it from an edge-on to a face-on view. There is only a
small region around the edge-on view where the plane appears really thin. When
rotating, depending on the shape of the satellite distribution in the plane, the plane
thickness rises steeply towards higher values, reaching almost the same value as the
radial root-mean-square extension calculated for the right panel of Figure 5.2. The
difference between the value calculated for that plot and the one obtained here is due
to the projection effect and the actual shape of the satellite distribution. For Figure
5.11, only the root-mean-square value of the projected distance onto the original
edge-on view of the plane is calculated, and not the true radial root-mean-square
value.
The dashed blue and black lines show the number of satellites appearing to

be projected onto the slit of ±22 kpc, where the edge-on plane is located when
rotating the whole satellite distribution in the same fashion as described above.
High concentration halos reveal only one distinct, rich plane, which is only seen
edge-on, while average and low concentration halos reveal a much greater degree
of scattering in the number of satellites projected into that slit. This might be due
to a more spherically symmetric distribution of the satellites in average and low
concentration halos, which would also be compatible with the results obtained from
the significance study, where the peak for finding planes in a random distribution is
around 9 or 10. This number is comparable to the value around which the number
of satellites in the slit in these halos fluctuates. The dotted blue and black lines
show the corresponding root-mean-square thicknesses of the satellites projected
onto the slit. This value is relatively constant, with a value of about 15 kpc for all
halos, regardless of the number of satellites in the slit.
Given the results of this plot, it seems to be fairly unlikely to find planes as rich

and as thin as the ones observed around Andromeda, unless it is viewed almost
edge-on. But nevertheless, these results imply that planes consisting of only around
10 satellites with a root-mean-square thickness of around 15 kpc can be found in
more or less every halo.
Moving on to the investigation of the kinematics, it is useful to test the dependence

of the count of co-rotating satellites measured via the line-of-sight velocity on the
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Figure 5.11: The variation of plane parameters as a function of inclination angle to the
plane when rotating around an axis perpendicular to the plane normal. Solid lines: the
rms value, ∆rms, of the plane when the satellites belonging to the plane are fixed. Short
dashed line: the rms value, ∆rms, of the plane with a fixed width of ∆rms = 22 kpc, with
rotation of the satellite configuration allowing satellites to step out of or into the slit. Long
dashed lines: The number of satellites in the plane with a fixed width of ∆rms = 22 kpc,
with rotation of the satellite configuration. The top row shows high concentration halos,
the middle row average concentration halos and the bottom row shows low concentration
halos.
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Figure 5.12: The line-of-sight velocity as a function of rotation angle when rotating the
plane around the normal vector in edge on view. The blue line shows the value measured
for Andromeda with dashed lines indicating an uncertainty of ± 1 co-rotating satellite. For
better comparison, the number of satellites in the plane is also given in the lower right
corner of each panel. This plot shows the same selection of halos as in Figure 5.7, with
high concentration halos in the top row, average concentration halos in the second row and
low concentration one in the third row. Additionally three plots for a random sample of 13,
14 and 15 satellites with randomized positions in the plane and randomized velocities are
shown in the bottom row.
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Figure 5.13: The fraction of satellites bound to the plane, color-coded by concentration.
The selection criteria for these satellites to be kinematically confined in the plane is the
ratio of the velocity component in the plane to the total velocity: v2in plane/v

2
tot >

2
3 . The

dashed black line indicates a fraction of 70% real satellites.

viewing angle when rotating the plane with an edge-on view around its normal
vector. If the planes found are fully co-rotating, there should be no dependence of
the line-of-sight co-rotation fraction on the edge-on viewing position. Thus, when
rotating the plane around the normal vector, the line-of-sight count of co-rotating
satellites should not vary. But if there are interlopers in the plane that only align
with it by chance, these might alter the behaviour. Or, if the plane is not fully
rotating, the line-of-sight velocity count should depend on the exact viewing angle.
In Figure 5.12, the number of co-rotating satellites counted via the line-of-sight

velocity are shown as a function of the viewing angle with an edge-on view. The
figure presents the same selection of halos as shown in the previous plots with high
concentration halos in the top row, average concentration halos in the middle row
and low concentration halos in the bottom row. For comparison, the number of
co-rotating satellites and the total number of satellites in the plane are shown in
the lower right corner of each panel. Furthermore, the number of 13 co-rotating
satellites observed in Andromeda is shown as a blue solid line with an uncertainty
range of ±1 co-rotating satellites shown as a dashed blue line. The first thing to
notice is that there is quite a large variation in the number of co-rotating satellites
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as the viewing angle changes. The overall number of co-rotating satellites is only
around 6 to 8 (60% of the co-rotation fraction). Really high co-rotating numbers are
only reached at some peaks of the special viewing angles. Despite halo G, which
reaches a co-rotation fraction of 100% for one specific peak only, high concentration
halos reach higher co-rotation fractions for larger intervals in the viewing angle.
But even these halos do not exhibit fully rotating planes. The reason for this could
be some special projections of elliptical orbits, counter-rotating satellites or some
other projection effect, but the most probable explanation is that the planes are not
fully kinematically coherent structures but include a significant amount of “fake”
satellites, which have just joined the plane coincidentally. This is can be concluded
from the comparison to a random sample of 15 satellites shown in the bottom row.
The line-of-sight counting of co-rotating satellites for a random sample exhibits the
same features as the simulated planes. Without specifying which panel is which it
is hard to tell wether a random distribution is given or not. Therefore inferring the
kinematical coherence of the plane from this measurement is not robust. This can be
further concluded from Figure 5.13 which shows the number of satellites confined
to the plane counted via an analysis of the velocity components in the plane and
perpendicular to the plane. For this plot, the 2-dimensional velocity component in
the plane vin plane is compared to the total velocity vtot. For this purpose the plane
normal is assumed to point in the z-direction.

vin plane =
√
v2x + v2y vtot =

√
v2x + v2y + v2z (5.2)

If the motion of satellites is fully random and isotropic, every velocity compo-
nent should have the same magnitude and the above comparison will result in
v2in plane/v

2
tot = 2/3. Therefore, this analysis can be used to test satellite planes for

their “real” rotation fraction. If v2in plane/v
2
tot < 2/3, the velocity component perpen-

dicular to the plane is higher than in a random case and the satellite can be regarded
as not taking part in the motion of the plane. Vice versa, if v2in plane/v

2
tot > 2/3, the

2-dimensional velocity component in the plane is higher than in the random case,
and the satellite‘s motion can be regarded as motion in the plane.
Figure 5.13 shows the fraction of satellites belonging to the plane if the above

criteria is used to discriminate between “real” and “fake” members as a function of
concentration. There is notmuch difference between the high and low concentration
halos. All of the halos reveal planes that contain about ∼30% “fake” satellites with
a high perpendicular velocity component relative to the plane, indicating that
these satellites are just by coincidence members of the plane. These results are in
agreement with the findings of Gillet et al. (2015), who find a fraction of about 1/3
of the satellites to be interlopers. This conclusion is also supported by the analysis
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of the angular momentum vectors of the plane members done in subsection 5.3.2
as well as the analysis of the past orbits of the satellites making up the plane at the
present time is presented in Figure 5.17.

5.3.2 Angular momentum analysis
Until now, only 1-dimensional or 2-dimensional measures of the kinematical coher-
ence of the plane have been used. In order to capture the motion of the satellites in
the 3-dimensional case, and not only as a projection by counting the number of co-
rotating satellites by their line-of-sight velocity, it is possible to measure the angular
momentum vector of each satellite in the plane and compare its direction to the
direction of the plane normal. A similar study was done by Pawlowski et al. (2013)
for the 11 classical Milky Way satellites (compare section 4.1.1 and Figure 4.1). The
angular momentum vector of the satellites that are fully orbiting counter-clockwise
in the plane should point in the same direction as the plane normal. For this anal-
ysis, the plane normal vector is set to (φ, θ) = (0, 0) in spherical coordinates as
seen from the halo center. For satellites that orbit clockwise within the plane, the
direction of the angular momentum vector should point in the opposite direction to
the plane normal, hence to (φ, θ) = (180, 0) or (φ, θ) = (−180, 0). Therefore, the
main difference between the co- and counter-rotating satellites is the directions of
their angular momentum vectors. Satellites that are not orbiting within the plane
show a deviation in the directions of their orbital poles from the plane normal.
For a better comparison of the clustering of orbital poles, the ones for clockwise
orbiting satellites are shifted back by 180◦ to scatter around φ = 0◦ rather than
φ = ±180◦, and are colored blue. The orbital poles for counter-clockwise rotating
satellites are kept fixed and are colored red.
In Figure 5.14, for each main halo, the direction of the angular momentum vector

of every satellite in the plane as seen from the main halo center and measured
in spherical coordinates is shown in a Hammer-Aitoff projection. As in the other
multi-panel plots, the high concentration halos are shown in the upper row, average
ones in the middle and low concentration halos are plotted in the bottom row. The
plane normal at (φ, θ) = (0, 0) is shown as a green dot. Furthermore, the spherical
standard distance of the Milky Way satellites, measured as the scatter of the angular
momentum directions around the mean orbital pole, is shown as a green solid circle
of radius∆sph = 29.3◦ (see Pawlowski et al. (2013)). The spherical standard distance
for all of the satellites in the planes of the simulations is shown as a dashed black
line with the average pole shown as a black dot. For comparison also three random
distributions of 13, 14 and 15 orbital poles drawn from a uniform distribution of
angles is also shown in the lower most panel.
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Figure 5.14:AHammer-Aitoff projection of the orbital poles of the satellites in the plane for
the same selection of main halos as shown in the previous plots, plus a random distribution
of orbital poles in the lower most panels. The upper most large panel shows halo A also
shown in a smaller version in the top left panel for good visibility reasons. The green dot
shows the direction of the normal vector of the plane and the color-coded dots show the
orbital poles of the co- and counter-rotating satellites, respectively. The green circle shows
the spherical standard distance,∆sph = 29.3◦, of the eight satellites contributing to the best
fitting plane of the Milky Way as calculated by Pawlowski et al. (2013). The black dashed
line shows the spherical standard distance calculated of all the satellites in the plane with
the black dot showing the average orbital pole of all of the satellites. The top row shows
high concentration halos, the second row average concentration halos, the third row shows
low concentration halos and in the bottom row a random sample consisting of 13, 14 and 15
random orbital poles is plotted.
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There is a large degree of scattering in the angular momentum directions around
the direction of the plane normal, indicating non-ordered motion. If the planes were
really to some degree rotating structures as the line-of-sight velocity measurement
would indicate, more or less all of the angular momentum directions would cluster
near the plane normal direction at (φ, θ) = (0, 0). This is obviously not the case,
supporting the conclusions drawn from the plots before that the planes are not
kinematically coherent structures. The only exceptions are the two upper right
panels for the high concentration halos that show more clustering. But even
for these halos, about 1/3 of the satellites do not rotate in the plane. This is in
agreement with the measurement done for Figure 5.13. For the Milky Way, there
are only 8 proper motion measurements used to find a plane from the clustering
of orbital poles (Pawlowski et al. 2013). Here all of the halos in the plane found
using the algorithm were used to calculate the average pole and the spherical
standard distance. For most halos, the calculated spherical standard distance is
comparable to that of the Milky Way, but the widespread distribution of orbital
poles indicates no coherent motion in the planes. Nevertheless, comparison of the
random distribution of orbital poles with the simulations shows that there has to
be at least some degree of ordered motion. The orbital poles of the halos in the
simulations are less widespread than a random distribution. This is in contrast
to the result of Figure 5.12 where no difference to a random sample was found.
Therefore the analysis of orbital poles is better suited to measure the co-rotating of
satellites in planes than simply count their line-of-sight velocity. Unfortunately it
is hard to obtain proper motion information for most of the satellites in Andromeda
to do this analysis. It gets even worse if one would do this measurement for satellite
planes further away from us than Andromeda.
Encouraged by these findings, it might be interesting to estimate the lifetime of a

plane by taking the velocity component of each satellite perpendicular to the plane
and multiplying it by an appropriate time scale to estimate the thickening of the
plane.

5.3.3 Plane evolution and plane stability
In Figure 5.15, an estimate of the thickening of the best-fit plane at the present
time is shown. For this plot, the motion perpendicular to the plane is integrated for
the next 150Myr to estimate how far the satellites in the plane would move. The
left panel of Figure 5.15 shows the thickening on an absolute scale while the right
panel shows it in terms of the old root-mean-square value, to give a better handle
on how the disk appearance changes. Nevertheless this estimate is an upper limit
as the disk precession and the exact orbital motion of the satellites is disregarded.
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Figure 5.15: Plane thickening. Given the perpendicular velocity of the satellites in the
plane, the thickening of the plane after 150Myr is estimated. Left panel: The absolute
thickness ∆rms of the plane. The dots show the estimated new root-mean-square thickness
of the plane consisting of the satellites originally in the plane. Right panel: The new rms
value of the satellites previously in the plane in terms of the old value. color-coding divides
the halos into high, average and low concentration halos.

4 6 8 10 12 14 16 18 20
concentration

0.2

0.3

0.4

0.5

0.6

0.7

〈v
〉 p

la
n
e

high conc

average conc

low conc

4 6 8 10 12 14 16 18 20
concentration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Fr
a
ct

io
n
 o

f 
sa

te
lli

te
s 

in
 p

la
n
e

high conc

average conc

low conc

Figure 5.16: Left panel: The average perpendicular velocity of all the satellites in the plane
of one host as a function of the concentration. Right panel: The fraction of satellites in
the plane after 150Myr. The dots show the fraction of satellites still in the region of the
original plane, which means they have a perpendicular distance to the plane smaller than
the largest distance of satellites at the present time from the plane. Color-coding divides
the halos into high, average and low concentration halos.
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After 150Myr, all of the planes show a thickness of more than 15 kpc, or in terms
of the old rms, they thicken up by more than a factor of 1.1, whereas the degree of
scattering is quite high. Interestingly, there is a strong trend with the concentration.
The lower the concentration, the higher the thickening. This is also supported by
the left panel of Figure 5.16, which shows the average velocity perpendicular to the
plane for all satellites in one plane. There is a slight trend with the concentration,
showing that low concentration halos show higher average velocities perpendicular
to the plane. But the very large overall scatter makes it impossible to state a clear
trend with the concentration. However, the best matching high concentration halos
have a comparable low perpendicular velocity.
However, a low value of disk thickening does not directly imply motion in the

plane. Since only the velocity perpendicular to the plane is regarded, it is possible
that satellites cross through the plane before drifting apart. For example, they could
start at one side, cross through the plane of thickness 2∆rms and stay within or close
to the old boundary of the plane. Thus they move quite a lot perpendicular to the
plane but its apparent thickening is not obvious in these plots. Therefore, it might
be interesting to additionally analyse how many of the satellites in the plane at the
present time are within the same region of the plane after 150Myr. Therefore, the
number of satellites still within the region defined by the distance of the furthest
satellite from the plane at the present time are counted. The value of the most
distant satellite from the plane gives an upper limit, since this measurement of the
thickness is in general greater than the rms value of the plane. The result of this
analysis is shown in the right panel of Figure 5.16. This plot shows the fraction
of satellites still within the region of the furthest satellite from the old plane after
evolving the positions with the perpendicular velocity component 150Myr into
the future. For nearly all halos, the number of satellites drops below ∼80% and is
on average as low as 70%. Since this is an upper limit on the fraction of satellites
still in the plane, it confirms that the plane will disappear on a small time scale.
The one high concentration halo, which keeps all its satellites within the region of
the furthest satellite, is an example of the fact that this estimate is really an upper
limit and does not account for the thickening of the plane due to the reshuffling
of the satellites within it. A look at the right panel of Figure 5.15 tells that this
plane thickens up to about 1.4 times its original thickness, which is ∼18 kpc, while
keeping all its satellites within the region of the former furthest satellite.
After this simple estimation of the future evolution of the planes, it seems clear

that planes of satellites are not a coherent kinematical structures but rather a
chance alignment, with at most a backbone of coherently rotating satellites. A
more elaborate estimate of the plane’s lifetime can be made by following the orbit
of the satellites in the plane and tracing their positions back in time. This is done in
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Figure 5.17: Visual impression of the orbits of the satellites in the planes of halo A (top
panels) and halo B (bottom panels) with an edge-on view. Dashed lines show the trajectories
of the satellites and colored squares show the positions of the satellites in the planes. From
left to right, snapshots at increasingly earlier times are shown. Left : The present day
configuration, middle: the configuration ∼0.6Gyr in the past and right : ∼1.2Gyr ago. In
each of the panels, the time, the rms value of the plane and the number of satellites still
within the region of the plane at the present time is indicated.

the next subsection for two high concentration halos that show the most promising
evidence of a kinematically coherent plane. Additionally, an explanation of the
plane formation process will be given in the next section.

5.3.4 Satellite orbits
The plane stability and the evolution of its thickness over the last few Gyr can be
investigated by tracking the satellites back in time and investigating their position
at the past. One can either look at the satellites making up the best plane at the
present time and calculate the corresponding root-mean-square thickness of the
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Figure 5.18: The plane thickening as a function of time for the best fitted plane of halo A.
Left panel: The rms value perpendicular to the plane for different time steps going back
in time for 4Gyr. Right panel: The evolution of the associated plane normal in spherical
coordinates θ (triangles), φ (dots) over the past 4 Gyr.

best fitted plane to them (Fig.: 5.18) or rerun the plane finding algorithm on the
whole satellite sample at an earlier time to find a new best fitted plane (Fig.: 5.19)
probably consisting of a different subset of satellites. Both of these methods were
used for two high concentration halos (halo A and halo B).

A visual impression of the orbits of satellites in the planes of halo A and B is
given in Figure 5.17. This plot shows the orbit of the satellites ending up in the
plane at the present time for about 4Gyr in the past (grey dotted lines). The three
panels of the figure also show the position of each of the satellites with colored
squares at the present time (left panel), at ∼0.6Gyr in the past (middle panel) and
at ∼1.2Gyr (right panel). From a quick look at the orbits, it is immediately clear
that there is almost no motion in the plane. The tracks of the satellites extend up to
a height of about 75 kpc above the plane or are in some cases even perpendicular to
the plane at the present time. Furthermore, after only 0.6Gyr the positions of the
satellites indicate a plane thickening up to about 50 kpc for halo A (upper panel)
and 20 kpc for halo B (lower panel). After∼1.2Gyr the plane is hardly visible, with
an rms value of 87 kpc (halo A) and 37 kpc (halo B).
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Figure 5.19: The planes at different time steps in the past. Left panel: The rms value
perpendicular to the plane (black dots) and the number of satellites in the plane (blue
triangles, right y-axis) for different time steps of the simulation down to 4Gyr in the past.
Right panel: The evolution of the corresponding plane normal in spherical coordinates θ
(blue triangles), φ (black dots) over the past 4 Gyr. The black and the blue lines show the
values of the present day orientation of the plane. The upper panels show halo A and the
lower panels show halo B.

This result is confirmed by Figure 5.18, where the plane finding algorithm was
used to find the best-fit plane (the thinnest plane) at earlier times to the positions
of the satellites making up the plane at the present time for halo A. The left panel
shows the root-mean-square thickness of the plane as a function of time, while
the right panel shows the plane normal directions θ and φ in degrees as a function
of time. The plane thickens up drastically, and after only 1Gyr the best-fit plane
exhibits a thickness of about 60 kpc. Thereby the plane orientation stays almost
the same, which can be seen from the right panel of Figure 5.18. After 1Gyr the
plane orientation changes significantly over the course of the next one Gyr, but
becomes nearly constant afterwards. The jump at ∼2.5Gyr in the past is due to a
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plane normal flip by 180◦ which does not affect the orientation of the pane. This
shows that one specific plane is not stable but rather a transient phenomenon.
A different approach to investigating the behaviour and occurrence of planes over

time is to search for planes among the 30 most massive satellites at the infall time
at different time steps in the simulation. In this case, the plane finding algorithm is
applied to the positions of the 30 satellites selected at the present time at different
time steps of the simulation. The outcome of this analysis is presented in Figure 5.19,
where the evolution of the plane thickness, ∆rms, number of satellites in the plane,
Nin, and the plane orientation for halo A and B are shown. Like Figure 5.18 this
plot shows in the left panel the rms value of the best-fit plane and in the right panel
the corresponding plane normal orientation in spherical coordinates. Additionally,
in the left panel, the number of satellites in the best-fit plane is shown with blue
triangles and in the right panel the orientation of the present day best plane is
indicated with dashed lines (black for φ, blue for θ). Figure 5.19 shows that there is
a possibility of finding planes with a comparably high number of satellites (∼12
or even higher) with reasonably low rms values (∼15 kilopc) over a longer time
period (∼200Myr). However, regarding the rms value and the number of satellites
in the plane, these planes are not stable. The rms value varies between 10 kilopc
and 18 kilopc (upper panel) and between 9 kilopc and 16 kilopc (lower panel) for
different time steps, and the number of satellites varies. For halo A (upper panel)
the variation is only by 1 satellite, and it stays nearly constant at 12 satellites, and
for halo B (lower panel) the plane gets richer in the past few time steps but then the
number of satellites declines and also fluctuates around 12 satellites in the plane.
As the right panel of the figure shows, the normal vector is quite constant over the
whole time period and does change only slowly, implying some kind of temporal
coherence of the plane. Over the considered time period of ∼4Gyr, the planes of
both halos exhibit on average about 12 satellites, which is comparable with the
estimate that out of the 15 satellites at the present time, at most about 70% are really
kinematically coherent.

5.4 Formation scenario and visual impressions of planes

5.4.1 Formation scenario

In this section, the question of where the spatial and kinematic coherence of at
least some of the members of the plane does come from is addressed. By tracing
the satellites in the plane back to a redshift of z = 3, the accretion of the satellites
along dark matter filaments can be revealed. This can be seen in Figure 5.20, where
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Figure 5.20: High redshift (z = 3) density plots of the satellite distribution ending up in
the plane and outside of the plane of halo A. The left panel shows density plots of x− y and
x− z-projections of the satellites ending up in the plane at z = 0, while the right panel
shows density plots of the x− y and x− z-projections of the satellites ending up outside
of the plane. The upper panel shows that satellites ending up in the plane are accreted
along two filaments coming from opposite sides of the main halo, which set a preferred
infall direction. On the other hand, satellites that do not end up in the plane are accreted
from everywhere. Comparison with the lower panel shows clearly that satellites ending
up in the plane lie within the filaments such that their projection collimates in the center
of the halo, while satellites that do not end up in the plane scatter around the main halo,
indicating that they are not part of the filaments.
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a density plot of the main halo and its substructure at redshift z = 3 is shown,
indicating the satellites in the plane with green circles and the satellites outside
the plane with white circles. Providing two different projections, these plots prove
the connection between accretion along the filaments and the property of being
in a kinematically coherent plane at redshift z = 0. While some of the satellites
might be scattered out of the plane when accreted onto the main halo, most of
the satellites accreted together stay in a similar orbit. This explains why high
concentration halos show more kinematically coherent and richer planes, although
even these planes contain up to a 30% chance aligned satellites. In contrast to high
concentrate halos, low concentration ones form later and not at the crossing points
of filaments, which leads to a more uniform accretion of satellites. Therefore the
orbits of satellites in low concentration halos are also not as well-ordered as in the
high concentration ones.
The presence of a plane of satellites in Andromeda seems then to suggest an

(unusual) early formation epoch for this galaxy. Such a scenario is consistent with
other observational evidences. For its stellar mass (∼ 1011M�), Andromeda lives in
a lower mass dark matter halo than typical galaxies of the same mass (Moster et al.
2010). At these stellar masses, the majority of galaxies are bulge-dominated and
not star-forming, while Andromeda is disk-dominated and star forming, consistent
with an early mass accretion history, and devoid of recent major mergers. A similar
line of reasoning also suggests an early formation epoch for the Milky Way.

5.4.2 Visual impression of planes
Figure 5.21 shows one particular projection of the two early forming halos A and B
whose plane parameters come closest to those of Andromeda’s. The left hand side
shows the spatial extension and the kinematics of the systems, clearly revealing a
thin but radially extended planes with coherent motion of the satellites around their
host. The right hand side shows a dark matter density map of the host halos, with
the two satellite populations superimposed, one in the plane (green circles) and one
outside the plane (black circles). Such distinct planes were reported previously in
CDM simulations (Gillet et al. 2015; Ibata et al. 2014; Pawlowski and Kroupa 2014)
but these were not as rich as the ones found here.
It is worth noticing that previous simulation studies were either limited by their

substructure resolution, as was the case for Millennium II simulations (Boylan-
Kolchin et al. 2009), or, conversely, by a lack of statistics relating to the host halos
(Gillet et al. 2015). Moreover, the halos were not selected according to their forma-
tion times. Since planes as rich as the one around Andromeda can be found in at
least some out of the 21 simulations, the rareness of the planes can be explained
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Figure 5.21:An edge-on view of the planes. The left panels show the sign of the line-of-sight
velocity of the best-fit plane consisting of 15 satellites (colored dots). Black dots show the
satellites that are not in the plane. The right panels show high resolution density plots of
the halo hosting the best matching plane. Green circles indicate the subhalos in the plane
and black circles indicate the subhalos that are not in the plane. The upper panels show halo
A, while the lower panels show halo B, a slightly more massive halo. These plots also reveal
the dependence of radial extension on mass.
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Figure 5.22: A visual impression of the planes. The left panels show the sign of the
line-of-sight velocity of the planes with edge-on view, while the right panels show the
planes in face-on view. Black dots show the satellites that lie outside the plane. Arrows
indicate the velocity perpendicular to the plane (left panels) and in the plane (right panels).
The top row shows high concentration halos, the middle row average concentration halos
and the bottom row shows low concentration halos.
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by the rareness of early forming halos. But it is worth noting that although the
halos appear in edge-on view to be rotationally supported, detailed analysis of
their kinematics reveals that this is not the case. A plane is only partly stable
when followed back in time. At most, a plane has a backbone that is kinematically
coherent, but a significant fraction of the satellites only appear as a result of chance
alignment. This is seen in Figure 5.22 in particular, where a selection of planes of
high, average and low concentration halos is shown.
Figure 5.22 shows edge-on (left panel) and face-on (right panel) views of planes

found in high, average and low concentration halos. The upper panels show the
high concentration halo B, the middle panels show the average concentration halo
E and the bottom panels show the low concentration halo H. Satellites in the plane
are shown as colored dots with the color indicating the sign of the line-of-sight
velocity. Arrows in each plot indicate the other two velocity components. In this
way, the upper right panel clearly shows a plane which appears to be rotating to
some degree, whereas a look at the edge-on view shows that at least 3 satellites
(∼20%) have a very high velocity component perpendicular to the plane. This
means these satellites are only chance alignments, which quickly leave the plane.
Nevertheless, this plane is a very good approximation to the Andromeda plane. It
also shows a high degree of lopsidedness, with nearly all of the satellites on one
side of the host center. The other panels in this figure are even worse. The lower
right panels do not show rotating planes, and the corresponding edge-on views in
the left panels show a higher fraction of satellites with high velocity components
perpendicular to the plane. Figure 5.22 supports the analysis of previous sections
in a nice fashion.
As a final piece of the visual impression, the dependence of the plane shape on

the definition of the halo’s virial radius should be examined. The halo virial radius
is defined via the average over density with respect to the cosmic mean density
within a sphere of that radius:

M
4π
3
R3

= ∆virρM (5.3)

There are several definitions for the average over density, for example, there exists
definitions for ∆vir = 200 or ∆vir = 100. The selection of ∆vir = 100 leads to a
bigger virial radius compared to the value for ∆vir = 200. This leads to totally
different planes, since for a bigger virial radius, significantly more substructure in
the outskirts of the halo will be included, and thus selecting the 30 most massive
satellites at the infall time leads to a more extended satellite distribution. Figure
5.23 shows a comparison of the planes found in the same halo with two different
definitions of the virial radius. The left panel shows a plane discussed in this thesis in
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Figure 5.23: A comparison of plane appearance for different definitions of the host halo’s
virial radius. Left : ∆vir = 200 Right : ∆vir = 100

edge-on view, with the definition of∆vir = 200, while the right panel shows a plane
with the definition ∆vir = 100. In the right panel, the entire satellite distribution
is more extended, and thus the plane appears also more radially extended, while
at the same time revealing the same thickness. Since in Andromeda it is not clear
whether satellites are within the virial radius of the halo or not, it might be worth
investigating the planes of satellites for different definitions of ∆vir and with the
additional inclusion of substructure outside of the virial radius. Unfortunately,
this is beyond the scope of this thesis and would also require hydrodynamical
simulations to robustly select luminous satellites.
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6 Summary and Discussion
This thesis investigates the occurrence of planes of satellites in high-resolution Dark
Matter only simulations resembling the one observed around our neighbouring
galaxy Andromeda (M31) (Ibata et al. 2013), where the kinematic information is
based on line-of-sight velocity measurements. Additionally, Pawlowski et al. (2013)
claimed to have found a rotating plane around our own Galaxy, the Milky Way.
Both studies compare their results to analysis using Millennium II simulations
(Boylan-Kolchin et al. 2009) and conclude that rotating planes of satellites are not
easily found in simulations of ΛCDM. Thus their reasoning is that ΛCDM is not
correct and should be revised.
However, there are two major difficulties with this conclusion. Firstly, the Millen-

nium II simulation has a particle mass of ∼107 h−1M�, lacking enough resolution
to robustly resolve the substructure needed for this analysis. Secondly, the detec-
tion of planes and the conclusion of kinematical coherence based on line-of-sight
measurements seems to be not reliable and/or planes that seem to be kinematically
coherent appear to be short lived systems. To address both of these issues, high
resolution “zoom-in” simulations of 21 roughly Andromeda-mass dark matter halos
have been conducted. These simulations use ∼107 dark matter particles to resolve
the main halo and its substructure, leading to a particle mass of ∼105 h−1M�. The
simulations can be analysed at different time steps to investigate the temporal evo-
lution of planes. Additionally, halos for re-simulation were selected according to
their formation times by selecting either high, average or low concentration halos.
The higher the concentration, the earlier the halo formed (Wechsler et al. 2002). Al-
though the observations around Andromeda use a special selection function given
by the peculiarities of the Pan-Andromeda Archaeological Survey (McConnachie
et al. 2009, PAndAS), for this work we chose not to reproduce the selection function
for a number of reasons. Instead, among the hundreds of resolved satellites within
the virial radius of the main halo, the 30 most massive ones at the infall time are
selected for analysis of their planes. These sub halos are assumed to be the luminous
ones (Kravtsov et al. 2004; Conroy et al. 2006; Vale and Ostriker 2006). A plane
finding algorithm invoking 100,000 random planes is applied to this sample of
satellites, and this algorithm was also used by Ibata et al. (2013) and Gillet et al.
(2015). The algorithm finds the thinnest and richest planes seen edge-on. The planes
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70 6 Summary and Discussion

found are characterised by the number of satellites in the plane, Nin, the number of
co-rotating satellites, Ncorot, and the root-mean-square value of the plane thickness,
∆rms. The planes are further analysed for the dependence of their parameters on
the concentration, their kinematics, the viewing angle and inclination as well as
their evolution over time.
The division of halos into high, average and low concentration halos demonstrates

that there is a clear dependence of the plane thickness on concentration. The
thinnest planes are only found in high concentration halos. Furthermore, only high
concentration halos are able to reproduce the observed planes, consisting of 15
satellites in a plane of width∼15 kpc with 13 co-rotating satellites. The reason why
high concentration halos are able to to produce thinner and richer planes compared
to average and low concentration halos is their formation time. High concentration
halos form at the nodes of the cosmic web and accrete matter along thin filaments,
while average and low concentration halos form later and accrete their matter
more uniformly. By tracking satellites in the planes of high concentration halos
back through time, it can be shown that most of the satellites in the plane were
accreted via filaments, explaining why high concentration halos show thinner and
richer planes. By obtaining satellites from special directions (opposite directions),
the chance of alignment in a plane becomes higher than in the case of uniform
accretion.
In general however, the number of satellites found in a thin plane is about 12,

with only a slight dependence on the concentration. However, as Figure 5.11 shows,
only high concentration halos seem to show distinct planes for one special viewing
angle, while average and low concentration halos are more comparable to a random
distribution. One thing that is common to all halos is that planes can only be
found when seen edge-on or when only very slightly inclined. It is only in this
special orientation that a thin extended plane is visible and detectable. In all other
configurations, the plane vanishes.
Once a plane is found in edge-on view and its co-rotation fraction is obtained

via line-of-sight velocity measurements, it is not clear if the line-of-sight counting
of co-rotating satellites results in the true value of co-rotating satellites. The
co-rotation fraction inferred via the line-of-sight velocity measurements is strongly
dependent on the specific viewing angle and can vary by as much as±6 co-rotating
satellites, or about 40%. There are several reasons for this, but the most probable
one is that the planes found can contain a lot of interlopers. This is supported by
Figures 5.13 and 5.14, which count the number of satellites contained in the plane by
the magnitude of the velocity components in the plane or by the angular momenta
of the satellites in the plane. Both figures show that the contamination of a plane
by interlopers is about 30%. This is also supported by the analysis of the orbits
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of the satellites in the planes for the two most promising planes, those in halos A
and B. The conclusion from this analysis is that the plane is a rather short-lived
object consisting of a backbone of satellites in the plane and a significant fraction
of chance alignments. A really thin plane is thus a special observation at a special
point in time from a special viewing angle, with a comparably high fraction of
chance alignments.
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7 Conclusion
In this thesis, planes of satellites in high resolution Dark Matter only simulations
have been investigated for their kinematics and formation scenarios. The connection
between the formation time of a host Dark Matter halo and the alignment of its
satellites in a plane as well as the coherent kinematics of its ssatellites using 21
high-resolution (10 million particles) cosmological N -body simulations has been
studied. The key new result is that high concentration (earlier forming) halos
tend to have thinner and richer planes. The simulations show that the presence
of a thin, rotating, and extended plane of satellites like the one observed around
the Andromeda galaxy is not a challenge for the Cold Dark Matter paradigm.
Conversely, it supports one of the key predictions of such a model, namely the
presence of large filaments of dark matter around galaxies at high redshift and the
web-like nature of cosmic structures in the Universe.
However, the rotating planes found contain a significant fraction of interlopers

(∼30%) and are not a long-lived systems. They thicken up on short time scales and
are only visible and detectable with an edge-on view. Nevertheless, the simulations
performed for this work are dark matter only ones, which do not capture the influ-
ence of baryonic physics. Therefore, the selection of luminous satellites according
to their mass at the infall time is one questionable point that could be alleviated
by using hydrodynamical simulations. Furthermore, as several other studies have
shown the impact of baryonic physics on small scales is quite high, it would be
desirable to include baryons and re-do all of the analysis with hydrodynamical
simulations. Nevertheless, the results obtained here, particularly those for the
number of satellites in a plane and the number of interlopers, agree well with the
results of other studies, like from Gillet et al. (2015), who used hydrodynamical
simulations of two local group analogues. Unfortunately, running hydrodynamical
simulations is beyond the scope of this Master’s thesis and will be left as future
work.
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