NIHAO-UHD: High-resolution (P) Simulations of Milky Way mass galaxies

IAU S334 Potsdam 13th of July

Tobias Buck

Andrea V. Macciò, Melissa Ness, Aura Obreja, Aaron A. Dutton, Hans-Walter Rix

Animation by T. Buck (MPIA, NYUAD) based on NIHAO simulations

NIHAO-UHD: High-resolution (P) Simulations of Milky Way mass galaxies

IAU S334 Potsdam 13th of July

Tobias Buck

Andrea V. Macciò, Melissa Ness, Aura Obreja, Aaron A. Dutton, Hans-Walter Rix

Animation by T. Buck (MPIA, NYUAD) based on NIHAO simulations

Tobias Buck

IAU S334 Potsdam

09.10.17

Tobias Buck

IAU S334 Potsdam

09.10.17

Questions from observation

- structure of the disc
- the Galactic center
- structure of satellites

Questions from observation

- structure of the disc
- the Galactic center
- structure of satellites

Why cosmological simulations

- realistic environment
- realistic growth history

Why high resolution simulations

- resolve disc scale-height
- resolve the satellites
- resolve the Galactic center

Simulation Recipe

GASOLINE2.1

Wadsley+2004, Keller+2014

2 gas cooling via hydrogen, helium and various metal lines and Compton cooling gas heating

via Photoionisation from the UV background Shen+2010

3

self consistent star formation from cold dense gas

Stinson+2006

4
early stellar feedback
and SN feedback
(energy + metals)

Stinson+2013

3

IAU S334 Potsdam

The Set of Simulations

6 Zoom-in simulations of Milky-Way mass galaxies

Initial conditions from the NIHAO project (Wang+2015) but a factor of 8-16 increase in mass resolution

Final galaxy masses: 7.5 x $10^{11}M_{\odot}$ to 2.8 x $10^{12}M_{\odot}$

Gravitational softening and particle masses:

- dark matter: 400 pc, 1.5 x $10^5 M_{\odot}$
- \cdot gas: 180 pc, 2.8 x 10 $^4M_{\odot}$
- \cdot stars: 180 pc, 9300 M_{\odot}

a7.55e

1.92e⁻

g1.12e12

RESULTS AND SCIENCE CASES

SCIENCE WITH NIHAO-UHD:

- SATELLITES AND DWARFS
- DISC STRUCTURE
- MILKY WAY BULGE

SAT
DW/
DIS(
MILI

RESULTS AND SCIENCE CASES

SCIENCE WITH NIHAO-UHD:

- SATELLITES AND DWARFS
- DISC STRUCTURE
- MILKY WAY BULGE

RESULTS AND SCIENCE CASES

SCIENCE WITH NIHAO-UHD:

- SATELLITES AND DWARFS
- DISC STRUCTURE
- MILKY WAY BULGE

RESULTS AND SCIENCE CASES

SCIENCE WITH NIHAO-UHD:

- SATELLITES AND
 DWARFS
- DISC STRUCTURE
 - MILKY WAY BULGE

see also Poster: 20 (Fragkoudi et al.), 32 (Han et al.), 46 (Kunder et al.), 50 (Lee et al.), 85 (Ciambur et al.)

The Galactic Center

The Milky Way is a barred spiral galaxy

The Galactic Center

The Milky Way is a barred spiral galaxy

The Galactic Center Observations vs. Simulations

The Galactic Center Observations vs. Simulations

The Galaxy in Kinematic Components

6D phase space kinematic decomposition:

decomposition of the galaxy by using gaussian mixture models and the parameter set (jz /jc , jp /jc , e) as from Obreja+2016

Tobias Buck

IAU S334 Potsdam

The Galaxy in Kinematic Components

6D phase space kinematic decomposition:

decomposition of the galaxy by using gaussian mixture models and the parameter set (jz /jc , jp /jc , e) as from Obreja+2016

The Galaxy in Kinematic Components

Kinematics of the Bulge Components Rotation and Dispersion profiles for classical and peanut bulge components • b = -5 • b = -10----- MW b = -5 MW b = -10spherical bulge peanut bulge 117556, 26628 74113, 18251 $\langle V_r \rangle [k$ 0 -100 100 [s/ux] Buck+2017 in prep. 25 20 0 20 -20 -20 0 | [°]

Tobias Buck

Kinematics of the Bulge Components

Rotation and Dispersion profiles for classical and peanut bulge components

Tobias Buck

IAU S334 Potsdam

Metallicities of the Bulge Populations

the bulge components show distinct metallicity sub-components

Buck+2017 in prep.

Metallicities of the Bulge Populations

the bulge components show distinct metallicity sub-components

Buck+2017 in prep.

Metallicities of the Bulge Populations

the bulge components show distinct metallicity sub-components

Birth Position of the Bulge Components

equal birth positions but very different present day positions!

secular evolution by the bar scatters stars to vastly different orbits!

see also Poster 20 (Fragkoudi et al.)

Buck+2017 in prep.

Conclusions to Go

NIHAO-UHD:

- reproduces key features of the MW
- contribute new insights into the formation and evolution of the MW
 - the simulated bulge has a complex substructure shaped by secular evolution

If you like to see your favourite Milky Way plot for my galaxies... write me: buck@mpia.de

IAU S334 Potsdam

Extra Material

Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse molestie consequat, vel illum

Morphology of the Bulge Components

classical bulge components: more spherically symmetric

peanut bulge components: boxy/peanut morphology

The Galactic Center in Simulations The Kinematics

Kinematics of the Bulge Components

decomposition of the metallicity distribution function by ----- MW b = -10

|b| = 5

|b| = 10

MW b = -5

Kinematics of the Bulge Components

decomposition of the metallicity distribution function by

Ages of the Bulge Components

decomposition of the metallicity distribution function by usage of 5 component gaussian mixture model

Kinematic Maps in I,b

Kinematic Maps in I,b - classical bulge

Kinematic Maps in I,b - peanut bulge

Tobias Buck